
www.manaraa.com

www.manaraa.com

ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Published by ProQuest LLC (

 ProQuest

). Copyright of the Dissertation is held by the Author.

All Rights Reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

10687751

10687751

2019

www.manaraa.com

www.manaraa.com

iii

© Nabil AL-Qadhi

2015

www.manaraa.com

iv

Dedicated To

 My parents

www.manaraa.com

v

ACKNOWLEDGMENTS

First and foremost thanks to Allah (SWT) for giving me the strength, patience and

ability to accomplish my thesis work. Peace and blessing of Allah be upon his last

messenger Prophet Mohammed (Sallallahu-Alaihe-Wasallam), who guided us to the right

path.

I would like to express my thankfulness to my thesis Advisor Dr.Mahmood Niazi

for the continuous support and encouragement rendered toward me. I would also like to

thank my committee members Dr. Mohammad Alshayeb and Dr. Sajjad Mahmood, for

their guidance throughout my thesis work.

I am very grateful for the love and unlimited support of my parents and my family

who carved the path to my successful journey in the field of research and education.

Finally, I would like to express my deepest thanks to all of my friends who helped me to

accomplish this study.

www.manaraa.com

vi

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... V

TABLE OF CONTENTS... VI

LIST OF TABLES .. IX

LIST OF FIGURES ... X

LIST OF ABBREVIATIONS .. XI

ABSTRACT .. XII

 XIV ... ملخص الرسالة

CHAPTER 1 INTRODUCTION ... 1

1.1 Overview .. 1

1.2 Thesis Objectives .. 4

1.3 Research Methodology ... 6

1.4 Thesis Outline ... 9

CHAPTER 2 BACKGROUND AND OVERVIEW ... 10

2.1 Software Security ... 10

2.2 Software Development Lifecycles (SDLC) .. 19

2.3 Security in the SDLC .. 25

2.4 The Important of a Systematic Literature Review ... 27

CHAPTER 3 LITERATURE REVIEW ... 29

3.1 Secure Software Development ... 29

3.2 Exiting Works .. 35

www.manaraa.com

vii

CHAPTER 4 RESEARCH METHODOLOGY .. 41

4.1 Systematic Literature Review (SLR) ... 42

4.1.1 Search Strategy .. 45

4.1.2 Publication Selection .. 49

4.1.3 Selection Primary Sources .. 50

4.1.4 Quality Assessment .. 52

4.1.5 Data Extraction ... 54

4.1.6 Data Synthesis .. 55

4.2 Snowballing ... 56

CHAPTER 5 RESULTS AND ANALYSIS .. 60

5.1 Systematic Literature Review (SLR) Results .. 60

5.1.1 Approaches Frequency Analysis ... 65

5.1.2 Lifecycles Phases Frequency Analysis ... 68

5.1.3 Active researchers Analysis .. 69

5.1.4 Publication Venues and Sources Types Analysis ... 71

5.1.5 Demographic Analysis .. 73

5.1.6 Study Strategy and institutional Analysis ... 76

5.2 Snowballing and SLR Results for RQ5 .. 78

CHAPTER 6 CONCLUSION ... 93

6.1 Contribution ... 96

6.2 Validity ... 96

6.3 Lesson Learned ... 97

6.4 Future Work .. 97

APPENDIX ... 99

www.manaraa.com

viii

Software Security Approaches Details .. 99

List of Publication Venues .. 126

REFERENCES.. 131

VITAE ... 150

www.manaraa.com

ix

LIST OF TABLES

Table 1 Primary Studies Selection from different resources .. 52

Table 2 STUDY QUALITY ASSESSMENT TABLE ... 53

Table 3 Data Extraction Form... 54

Table 4 Data Synthesis Form .. 56

Table 5 Results (SLR + Snowballing) .. 59

Table 6 Approaches Categorization .. 61

Table 7 List of Security approaches .. 63

Table 8 Approaches Freq. Analysis .. 65

Table 9 freq. of studies in security SDLC... 68

Table 10 Active researchers Freq. Analysis ... 69

Table 11 Distribution of selected studies over source types. .. 71

Table 12 Top five Publication venues of identified articles ... 72

Table 13 Country frequency analysis ... 73

Table 14 Continent Analysis ... 75

Table 15 Study Strategy Used... 76

Table 16 Institution Analysis .. 77

Table 17 Limitations and Challenges ... 79

Table 18 limitations and challenges categorization .. 87

www.manaraa.com

x

LIST OF FIGURES

Figure 1: Typical phases of SDLC [37] .. 19

Figure 2: A Typical Iterative Cycle for Developing Software Solutions 20

Figure 3: The Traditional Waterfall Mode.. 23

Figure 4 SDL Overview [50] .. 30

Figure 5 Seven TouchPoints for Software Security[3] ... 32

Figure 6 Use and Misuse case of a banking system[51] ... 33

Figure 7 Research Methodology ... 42

Figure 8 selection process ... 44

Figure 9 Selection Process .. 51

Figure 10 The Snowballing Process [67] .. 58

Figure 11 Top 9 researchers in the area .. 70

Figure 12 Publications venue distribution .. 72

Figure 13 Country contributed to Software Security .. 74

file:///F:/Final%20Final%20-%20Exploring%20software%20security%20approaches%20and%20their%20limitations%20in%20software%20development%20lifecycle.docx%23_Toc421051648
file:///F:/Final%20Final%20-%20Exploring%20software%20security%20approaches%20and%20their%20limitations%20in%20software%20development%20lifecycle.docx%23_Toc421051649

www.manaraa.com

xi

LIST OF ABBREVIATIONS

SDLC : Software Development Lifecycle

XP : Extreme Programming

CC : Common Criteria

SLR : Systematic Literature Review

CERT : Computer Emergency Response Team

BOF : Buffer OverFlow

XSS : Cross Site Scripting

SQL : Structural Query Language

SQLIA : SQL Injection Attack

UML : Unified Modelling Language

OWASP : Open Web Application Security Project

RBAC : Role Based Access Control

MDS : Model Driven Security

CLASP : Comprehensive Lightweight Application Security Process

SSAI : Software Security Assessment Instrument

www.manaraa.com

xii

ABSTRACT

Full Name : [NABIL MOHAMMED ABDO MOHAMMED]

Thesis Title : [Exploring software security approaches and their limitations in

software development lifecycle]

Major Field : [Information and Computer Science]

Date of Degree : May ,2015

Software security is only considered in the later stages of software development

with the incorporation of security concerns as an afterthought. As a consequence, the risk

of introducing new security vulnerabilities into various stages of software development

lifecycles increases. Research evidence has proven that approaches to address security-

related concerns are insufficient and could likely cause costly reworks in addition to all

the intangible consequences caused by a security breach. To avoid these costly mistakes,

security concerns need to be addressed from the beginning of software development

lifecycles all the way through to deployment and maintenance. Several approaches have

been proposed in the literature for incorporating security into the SDLC from the

requirements gathering phase until the maintenance and deployment, along with

recommended tools to support a security-centric software development lifecycle. Despite

the importance of these approaches, little research has been carried out to investigate

these approaches and their limitations in a systematic manner. In this thesis, we propose

to explore and identify software security approaches and their limitations in the software

development lifecycle. Systematic Literature Review (SLR) and Snowballing are the

research methodology used to guide us in finding the answer of our research questions. In

total, we selected and categorized 165 articles. Several software security approaches have

www.manaraa.com

xiii

been identified that provided security checks in various software development phases,

such as requirements, design, and coding. Also, the results show that the most frequently

cited approaches are static analysis and dynamic analysis that provide security checks in

the coding phase. Furthermore, this study shows that the significant number of studies in

this review considered security checks around the coding stage of software development.

Finally, the limitations of existing software security approaches of incorporating security

check in to software development- whether for identified existing software security

approaches or general challenges and limitations - are identified. This work assists

software development organizations in better understanding the existing software security

approaches used in the software development lifecycle and their limitations. It can also

provide other researchers with a firm basis on which to develop new software security

approaches and address any of the identified limitations. We hope that our research will

facilitate any future research on enhance the identified software security approaches and

address their limitations.

www.manaraa.com

xiv

 ملخص الرسالة

 نبيل محمد عبده محمد الكامل:الاسم

 (SDLC)أمن البرمجيات وتحيدياتها في دروة تطوير البرمجيات أساليب استكشاف :عنوان الرسالة

 ماجستير العلوم :العلميةالدرجة

 التخصص: علوم الحاسب الألي

نشاطات وممارسات الأمن في المراحل مع دمجتطوير البرمجيات منيهُتم بأمن البرمجيات فقط في المراحل المتأخرة تقليديا,

يات في ازدياد. الادلة غرات الأمنية الجديدة في مختلف مراحل تطوير البرمجنتيجة لذالك, فإن مخاطر إدخال الثاللاحقة . و

 Software)أثبتت أن الاساليب لمعالجة أمن البرمجيات في المراحل اللاحقه في دورة تطوير البرمجيات البحثية

development lifecycle) بالاضافة الى ,مكلفة أو مراجعة غير فعالة ويمكن على الارجح ان تسبب في اعادة صياغه

 security)المخـاوف الأمنية , والثغرات الامنية رق الامني. لتجنب هذه الاخطاء المكلفةعواقب غير ملموسة الناجمه عن الخ

concerns) ينبغى معالجتها من بداية تطوير البرمجيات ابتداء من مرحلة جمع المتطلبات والتصميم وصولا الى كتابة الأكواد

البرمجيات الى دورة تطوير البرمجيات وث السابقة لدمج أمن والصيانة والنشر. هناك العديد من الاساليب تم اقتراحها في البح

ابتداء من مرحلة جمع المتطلبات وصولا الى الصيانة والنشر , جنبا الى جنب مع الادوات الموصى بها لدعم دورة تطوير

اف هذه المناهج وتحدياتها البرمجيات. على الرغم من اهمية هذه الاساليب والمناهج , قليل من البحث تم تنفيذه لتحديد واستكش

بطريقة ممنهجة. في هذه الاطروحة , نقوم باستكشاف وتحديد اساليب ومناهج أمن البرمجيات وتحدياتها في دورة حياة تطوير

, والذين يقومان (Snowballing)و السنوبولنج (SLR)البرمجيات. طريقة البحث المستخدمة هي المراجعه الممنهجه للادب

من مناهج واساليب أمن مقالا. العديد 165.في المجموع, تم اختيار وتصنيف العثور على إجابة سؤال البحث لدينا بتوجيهينا في

والتحقيق الامني في دور حياة تطوير البرمجيات تم ايجادها واستكشافها ابتداء من مرحلة جمع البرمجيات التي تقدم الفحص

 static). بالاضافه الى ذالك , نتائج هذه الدراسه أظهرت ان التحليل الثابتالمتطلبات مرورا بتصميمها وكتابة الاكواد

analysis) والتحليل الديناميكي(Dynamic analysis) اكثر ذكرا ودراسة في البحوث المنشورة في هذا الموضوع. ومن

خلال مرحلة كتابة الاكواد في ناحية اخرى اظهرت هذه الدراسة , ان عدد كبير من الدراسات اهتمت بتقديم الفحص الامني

في سواء –دورة حياة تطوير البرمجيات. بالاضافة الى ذالك ,تم تحديد تحديات وعوائق مناهج واساليب تطوير أمن البرمجيات

في دورة حياة تطوير البرمجيات. هذا العمل يساعد منظمات -الاساليب الموجوده او العوائق العامة لتطوير برمجيات أمنه

البرمجيات في فهم مناهج واساليب تطوير أمن البرمجيات خلال دورة حياة تطوير البرمجيات وتحدياتها. وكذالك هذه تطوير

الدراسة تزود الباحثين والممارسين اساسا متينا لتطوير اساليب ومناهج جديدة لدعم تطوير برمجيات امنه وكذالك اقتراح حلول

هج المنشورة مسبقا. نأمل أن هذه الرسالة ستسهل اي عمل في المستقبل في تحسين مناهج للعوائق والتحديات في الاساليب والمنا

 واساليب تطوير أمن البرمجيات وحل عوائقها وتحدياتها.

www.manaraa.com

1

1 CHAPTER 1

INTRODUCTION

1.1 Overview

Software-intensive systems have become an inseparable part of our lives today.

Our dependence on software systems is very high in several areas of our daily activities,

such as telecommunications, financial services, electronics, home appliances,

transportation, and more. As the software system is involved in various aspects of

society, security becomes an important issue and a vital requirement for the software

system. Many security issues such as confidentiality, availability and integrity need to be

preserved in order to consider software as secure [1].

Traditionally, software security is considered only in the later stages of software

development, by incorporating security concerns as an afterthought. As a consequence,

the risk of introducing new security vulnerabilities into various stages of software

development lifecycles will be increased. Following the traditional method of securing

Software has led to the Penetrate and Patch approach, in which the security specialist

tries to assess the software by breaking it from its environment via exploiting common

security vulnerabilities. Successful penetration leads to patch development and

deployment of the identified vulnerabilities. Security has been always treated as an add-

on feature in the software development lifecycle, and is addressed by security

www.manaraa.com

2

professionals using firewalls, proxies, intrusion prevention systems, antivirus and

platform security. Software is at the root of all common computer security problems,

hence the reason why hackers don’t create security holes, but rather exploit them.

Security holes in software applications are the result of bad design and poor

implementation of software systems and applications. Unfortunately, cryptographic

components as well as other defensive mechanisms, such as intrusion detection systems

and firewalls, which are supplemented to a software system towards the end of the

development cycle, are insufficient and may lead to costly reworks [2]. Research

evidence has proven that such approaches to address security-related concerns are

insufficient and will likely cause costly reworks in addition to any intangible

consequences caused by a security breach. To avoid these costly reworks, security

concerns need to be addressed from the beginning of software development lifecycles

(i.e. from the requirements gathering until deployment and maintenance). To this end,

secure software engineering has recently become a very active area of research. Like all

other engineering disciplines, software engineering involves a structured sequence of

stages to develop a software product. These stages are known as the software

development lifecycle. The main stages, whether using traditional or agile

methodologies, are: requirements analysis, design, implementation, testing, deployment

and maintenance. However, none of the traditional methodologies used for software

development lifecycles have considered security as a deliverable in any of the stages of

the lifecycle. Security has been always treated as an add-on feature in software, which

explains the reason behind security bugs and flaws that are exploited by hackers today.

www.manaraa.com

3

Therefore, the goal of secure software engineering is to target the software

security vulnerabilities by considering security concerns and development approaches

from the beginning of the software development lifecycles (i.e. from the requirements

gathering until the end of the process). Secure software engineering is the procedure of

achieving security purposes through build, design and test the software. Also, Software

security is different from application security in that application security is about

protecting software after development and deployment. It usually includes various

protection mechanisms such as firewalls, antivirus and intrusion detection systems [3][4].

Several approaches have been proposed in the literature that is used for incorporating

security into the SDLC from the requirements gathering until maintenance and

deployment, along with tools to support a security-centric software development

lifecycle. Despite the importance of these approaches, little research has been carried out

to investigate these approaches and their limitations in a systematic manner.

During the last few years, a number of papers have focused on secure software

development, some of which have carried out reviews and comparison studies on the

issue. However, most of these reviews focused only on the secure software engineering at

the requirements engineering phase of the SDLC and others concentrated only on special

software development methodologies, such as Agile or XP. After performing preliminary

searches aimed at both identifying existing systematic reviews and assessing the volume

of potentially relevant studies, we can highlight a few works in a summary of a small

group of security approaches in the security requirement of the requirements phase, such

as [5]–[10], as well as a review of security approaches for specific domains such as web

application[11]. There were also some reviews that investigated software security in

www.manaraa.com

4

specific development methodologies such as agile and XP [12] [13]. However, none of

them performed a review focused on software security approaches that cover all stages of

software development lifecycles in a systematic manner and their limitations, and none of

those reviews documented the systematic processes for selecting the initiatives (primary

studies). Thus, there is a need to investigate the available security approaches and their

limitations—as well as the stages in which these approaches are incorporated—in a

systematic manner, to identify the gap in this area for further contribution by both the

researcher and the practitioner.

With this focus, the objective of this research is to identify an available

approaches for secure software development in a systematic manner, through commonly

used methodology in software engineering called a systematic literature review (SLR).

An ultimate outcome of this research is to aid software development organizations with a

sound knowledge of the existing secure software development approaches, as well as the

stage in which these approaches are incorporated. Also, we will assist the software

development organization in better understanding the limitations of existing software

security approaches used in the software development lifecycle and to provide other

researchers with a firm basis on which to develop new software security approaches.

1.2 Thesis Objectives

The overarching objective of this research is to identify the existing software

security approaches used in the software development lifecycle as well as its limitations,

and to provide other researchers with a firm basis on which to develop new software

security approaches.

www.manaraa.com

5

The objective of this research is two-fold:

1. Identify different software security approaches used in the software development

lifecycle.

RQ1: What approaches are available for secure software development?

RQ2: At which stage of the software development lifecycle is the software security

approach incorporated?

RQ3: Which researchers are most active in software security?

RQ4: What are the main venues for publications on software security?

2. Identify the existing limitations of software security approaches used in SDLC.

RQ5: What are the limitations of software security approaches used in the software

development lifecycle?

A systematic approach will be employed with the intention of achieving the thesis

objectives to identify the software security approaches for building security from the

beginning of the software development lifecycles, as well as the possible existing

limitations of these security approaches. This approach will be implemented by using the

concepts of “systematic literature review” (SLR). Additionally, snowballing from the list

of references of the identified articles used is another method used in this research (i.e., to

identify additional relevant articles through the references lists of the articles found using

the search strings, as well as the articles identified through manual search using Google

Scholar to answer the (RQ5). Both backward snowballing from the lists of references and

forward snowballing which is finding the citations to the papers, were included in this

research.

www.manaraa.com

6

The contribution of the thesis assists software development organizations in better

understanding the existing software security approaches used in the software

development lifecycle and its limitations, as well as to provide other researchers and

practitioners with a firm basis, solid foundation and a body of knowledge on which to

develop new software security approaches.

The following approaches are used as a guide for answering our research

questions:

1. Identify different software security approaches used in the software development

lifecycle by using the systematic literature review methodology.

2. Identify, through the use of snowballing, the existing limitations of software

security approaches used in the software development lifecycle.

3. Analyze the results of step 1 and 2 to provide a comprehensive knowledge and to

achieve our objectives.

1.3 Research Methodology

In order to achieve our objectives, we have designed an appropriate research

methodology in which data will be collected from the published literature (i.e., a

systematic literature review process and snowballing). These two processes will give us

confidence in the reliability of the data collected. A systematic literature review is a

defined and methodical way to summarize the empirical evidence concerning a treatment

or technology, in order to identify missing areas in current research, or to provide

background in order to justify new research. A systematic literature review requires

considerably more effort than conventional literature reviews, but provides a much

stronger basis for making claims about research questions [14]. Hence, the SLR was an

www.manaraa.com

7

appropriate research method for our research, which is aimed at identifying the software

security approaches for building security from the beginning of SDLC. We will follow

the SLR guidelines proposed by Kitchenham and Charters [14] for performing the SLR,

which contains three main processes identified:

1) Planning the review: By specifying the research questions and developing the

review protocol which contains the search strategy, and by identifying search strings

derived from the research questions, scopes and methods. Additionally, the quality

assessment of selected studies as well as the inclusion and exclusion criteria and data

extraction forms will be used.

2) Conducting the review: By identifying relevant researches and selecting the

primary studies from them, we will then assess the study quality, extracting the required

data. Finally, we will synthesize the extracted data, checking the most frequent

approaches that are used for incorporating security concerns into the SDLC and the most

frequent phases where the security approaches are emphasized. This categorization will

help in identifying the most neglected stage in terms of security so that new room can be

opened for further research. Additionally, we will analyze studies based on the countries

where they were conducted, the active researchers and on the publication venue of the

primary studies that contribute to the topic.

3) Reporting the review: We will write up the final report.

After the results (i.e., software security approach for building security into software

development lifecycles) have been identified by SLR, we will identify the possible

limitations and challenges of incorporating security into the SDLC using snowballing

from the list of references of the identified articles via the SLR and the articles identified

www.manaraa.com

8

through manual search using Google Scholar. Both results will build a comprehensive

mapping study about building security from the ground up through integrating security

into the SDLC.

Our research methodology and approach can hence be summarized into the

following phases:

Phase 1: Systematic Literature Review (SLR)

In the first phase we will start the systematic literature review. We have identified

the primary resources and research database as follows: ACM Digital Library,

ScienceDirect, IEEEXplore, SprinerLink and John Wiley Online Library.

Phase 2: Snowballing

In this phase, we will identify the limitations and challenges of software security

approaches for building security into the SDLC using snowballing from the list of

references of the identified articles via SLR and the articles identified through manual

search using Google Scholar.

Phase 3: Interpretations and Analysis

The results compiled from the SLR and snowballing will be interpreted and

analyzed in alignment with research objectives in order to answer the research questions.

Phase 4: Conclusion

The conclusion of the entire effort of this research will be presented.

Phase 5: Thesis Writing

Complete the thesis write-up.

www.manaraa.com

9

1.4 Thesis Outline

The remaining sections of the thesis are organized as follows. Chapter 2 presents

basic terminology and background information on software security and secure

development. Chapter 3 presents the state-of-the-art literature review in the field pointing

out the gaps in the literature which is addressed by this thesis. The literature review will

compose a body of knowledge necessary to justify our purpose of the research. Chapter 4

addresses the research methodology of our research. Results are illustrated in tabulated

and charted format in chapter 5. It will be accompanied by extensive interpretation and

analysis in alignment with the research objectives. Chapter 6 draws a conclusion on our

research.

www.manaraa.com

10

2 CHAPTER 2

BACKGROUND AND OVERVIEW

This chapter presents basic terminology and background information on software

security and software development lifecycles. Section 2.1 explains software security

concepts, while section 2.2 presents the software development lifecycles, concepts and

activities, and section 2.3 and section 2.3 discuss security into the SDLC and the

important of a systematic literature review.

2.1 Software Security

I. Software security concepts:

There are some definitions of software security that has been found in the literature as

follows:

-“Software Security is the ability of the software to resist, tolerate, and recover from

events that intentionally threaten its dependability.” [3]

-“Software Security is about building secure software: designing software to be secure,

making sure that software is secure, and educating software developers, architects, and

users about how to build secure things.” [15]

-“The idea of engineering software that continues to function correctly under malicious

attack.” [16]

-“The process of designing, building, and testing software for security.” [15]

www.manaraa.com

11

-“Defends against software exploits by building software to be secure in the first place,

mostly by getting the design right (which is hard) and avoiding common mistakes ." [17]

-“Software Security is a system-wide issue that takes into account both security

mechanisms (such as access control) and design for security (such as robust design that

make software attacks difficult).” [15]

Software security has been defined by different people, and no standard definition

has been agreed upon. We can observe that most of the above definitions are concerned

about building secure software which is actually means to design and implement secure

software from the beginning of software development.

II. Software security terminology

 Asset is anything valuable, and needs to be protected. It is the “target of threats,

the possessors of exposures, or the beneficiary of countermeasures”. According to

McGraw and his colleagues [18], several things could be considered as an asset, such as

components or complete systems, information or data stored by software, code—whether

binary or source, and services supplied by the software. Also, severe consequences such

as physical injury, financial loss, and sometimes even death due to the effective

exploitation any of these assets [18].

 Software vulnerability is "a weakness in the security system, for example, in

procedures, design, or implementation that might be exploited to cause loss or harm"

[19]. The errors in the software may make it vulnerable, and these errors can be found in

different stages such as requirement specification, design, or coding of a system [19].

Software vulnerabilities are classified into two main categories [3] :

www.manaraa.com

12

 Design-level: at this level, the vulnerability may occur as a result of a design flaw.

 Implementation-level: at this level, the vulnerability may occur as a result of a

bug in the code. In this type, the attackers can exploit the vulnerability easily to achieve

their purposes.

Defect is a latent problem that lays for years [20].

Bug Problem that exists in the code during the implementation stage [3].

 Software Security Error

In the literature, the researchers use the term vulnerability instead of error and most

of the authors do not differentiate between them [21]. It has been defined as "a tangible

manifestation of a mistake in any of the SDLC artifacts (requirement specifications,

design, or source code) of a piece of software that leads to a vulnerability" [21][22].

 A software security error is categorized into three types of errors:

a) Requirement error: this error can happen due to an incorrect or missing

requirement as a result of a mistake made by the requirement engineer who is responsible

for specifying the requirements.

b) Design error - improper logical decision (whether in the representation of the

decision or in the decision itself) in the design phase of the software development

lifecycles.

c) Coding error - mistake made by the coder (implementer) in the implementation

stage of software development lifecycles that leads to represent the design decision

incorrectly in the source code.

www.manaraa.com

13

 Software Security Requirements

Software security requirements are the requirements that are needed in order to

mitigate software security errors in the software development lifecycle [22]. More

precisely, a software security requirement can be considered as a constraint or control

which will mitigate the chance of vulnerability if it is implemented in a suitable manner.

More attention should be given to software security requirements that are specified for

any SDLC artifact because a software security error can exist at any stage of the software

development lifecycles artifact [22].

 Risk

The risk is the product of the probability of the occurrence of the attack multiplied

by the damage of that successful attack on different assets of the software [18][22].

 Risk Specification

Risk specification or risk analysis is calculating the risk. This process could be done

in any stage of SDLC. Risk analysis concerns existing vulnerabilities, attacks and their

impacts, and the likelihood of future attacks [22][18]. Also, threat modeling [19] is an

approach for identifying the possibility of the threats to a piece of software. This

approach considers the software assets, occurrence of the attack and attackers’ goals.

 Attack Surfaces

Possible access points that help the attacker (whether an entity or a person) with

potential interaction with the software and intentionally attempting to attack it, such as

user interfaces, data files and configuration files. The more entry points, the more attack

surfaces and vice versa.

www.manaraa.com

14

III. Software security and information security

Nowadays, software is the critical issue in computer security since software holes

are prevalent, and the problem is still growing. Moreover, the problem may become much

worse in the future due to the fact that [23]:

 New software operates in networked environments which is vulnerable to many

hostile attacks.

 New systems that are extended by Java VMs and .Net runtime environments

become more popular, which lead to mobile code risk.

 The number of complicated and complex types of software is growing.

The fundamental way of solving computer security problems is by making software

secure. However, the question here is, “What is the most effective way to protect

software from vulnerability?” To answer this question, the difference between a software

security and an application security are clarified. The software security is about design

and implement secure software through building secure software from the beginning of

SDLC. This concept addresses critical issues such as software security requirements,

designs for security, security flaws and security tests. It is mostly concerned with

designing and implementing software to be secure, as well as training software

developers, designers, and users about securing the software through the design,

implementation and testing of software before deployment [2] [10].

Application security is about protecting the software after development. This

concept addresses critical issues such as protecting against malicious code, input

validation of the program, and making software use certain policies with technological

www.manaraa.com

15

solutions. Application security is mainly about looking for security problems and fixing

them after the attacker exploits them. However, this approach concerns security

symptoms in a reactive way, ignoring the original cause of the problem.

Both concepts are related to the idea of the prevention of software exploitation.

Software security mitigates the chance of exploitation through building the secure

software in the early stages of development, mostly by incorporating security into the

SDLC. On the other hand, application security mitigates the chance of exploitation by

enforcing reasonable policy about what kinds of things can run, how they can change and

what the software does as it runs [2] [10].

In order to develop better software, building the software to be secure in the first

place by solving problems that are found in the design and implementation stage of

software, is better than finding and fixing security problems after the software is built

[23]. This will reduce the overall development cost of a product and this is what we are

care about in this research.

IV. How is security addressed?

A number of approaches have evolved to address software security. Following are

three major approaches used to address security in software [24].

 Penetrate and patch

 Secure operational environment

 Secure software engineering

In the penetrate and patch approach, a software product is released to the public

after completion. Any vulnerability found is fixed by applying patches. Although it is the

www.manaraa.com

16

most common approach, to apply patches after finding vulnerabilities is a hundred times

[24]–[26] more expensive than if the issues were fixed during development. Most of the

time, more vulnerabilities are introduced while applying patches [11] [13] [14]. Securing

the operational environment [24] relies on the external devices to the software systems

such as firewalls and protection mechanisms. It can provide external security to the

software, but helps very little against design and implementation attacks. Moreover,

operational environment security is only possible after launching the operational product

[24]. The idea behind secure software engineering is to implement well-structured

processes and mechanisms from the early phases of software development (i.e.,

requirement elicitation) [24]. Secure software engineering starts from the requirements

phase and is reflected in the entire stage of the SDLC [28]–[31].

i. The need for software security:

Software security has not been given the appropriate attention in recent years. This

does not mean that it has not been discussed before, but it would seem that there are some

misunderstandings in the concept and the way it should be practiced. A group of

researchers and authors began publishing security books in 1999, and started discussing

the best way to incorporating security into systems [32]. Incorporating security is often

considered as an add-on feature to a system when the development lifecycle is completed.

In many organizations, the responsibility of security is left to a few infrastructure people

who set up the intrusion detection (IDS), antivirus and firewalls [15]. These people are

not developers, architects or designers.

www.manaraa.com

17

The concept of software security has been neglected by requirement analysts,

software implementers, and design architects. They have given it little or no attention

during the development process, which leads to dire consequences as security problems

show up in the software. CERT (CERT/CC) Coordination Centre has reported about

90% of the security problems due to the exploitation in the development and design flaws

[32] and more of them due to bad style in the coding, such as BOF and XSS. Also, these

flaws have been exploited even with the existence of the security afterthought approaches

such as firewalls, intrusion detectors and antivirus programs.

In addition to the factors mentioned above, many other factors need to be

considered that support the need for software security, such as connectivity, complexity

and extensibility [33]. Software is getting bigger and bigger in size due to having to deal

with huge tasks. This has led to a lot of flaws at the design and coding levels. Also,

extensibility can help in providing a cheaper way to update the software such as in

Microsoft’s .Net and Sun Microsystems’ Java that accept code and update. This feature

can lead to making the software vulnerable to malicious code. Furthermore, during the

last decade, there has been a huge evolution related to connectivity. The growth of local

area networks and wireless area networks, as well as the internet, has modernized the

connectivity in the world of computers. This helps the attacker to hack systems through

remote access from the networks. All of these factors help attackers to achieve their

purposes and make software easier to exploit.

Due to ineffective techniques such as antivirus programs, intrusion detectors and

firewalls, neglecting the notion of security among architectures, designers and

developers, and the lack of awareness of security in the SDLC, the techniques of process

www.manaraa.com

18

improvement suggest finding better ways of incorporating security into software. This

can be done by building security in such a way that security aspects are injected into the

SDLC, and awareness should be created between stakeholders, developers, architects and

developers—all of whom are involved in the software development process.

V. Traditional approaches for software security

Software security has been viewed as a set of firewall tools, encryption and testing

that incorporate security into software development. A group of developers usually

consider that a software shipment with firewall tools and authentication could be more

than enough for securing software. Also, many software builders and security

practitioners consider software security as an add-on feature to the software system.

"Present software engineering practice in the industry does not lead to secure software at

all" [34]. Unfortunately, for the last few years, many software practitioners and software

builders consider software security as one of the quality features that need to be dealt

with when product is shipped, or before deployment.

More recently, there is an incomplete view that has been suggested by security and

industry experts, practitioners, and researchers about software security. In early 2002, an

alert flag was raised about the importance of building secure software, by Trustworthy

Computing Initiative [34]. In 2004, Michael Howard, a security expert at Microsoft,

warned about this problem: "Few software developers follow security best practices to

produce more secure code. Worse, they think of security after the fact. But it's a mistake

to separate security consideration from the general software development process." [35]

Many other security researchers have fought the traditional methods of software security,

www.manaraa.com

19

such as Gary McGraw: "Software security is not just about building security functionality

and integrating features!” He also clarifies that "just as you can't test quality into a piece

of software, you can't spray paint security features onto a design and expect it to become

secure." [3]

2.2 Software Development Lifecycles (SDLC)

The software development lifecycle is a methodology for the design and

implementation of software solutions. Furthermore, a methodology may be defined as a

formal approach to solving a problem, based on a structured sequence of procedures. The

use of a methodology, therefore, ensures a rigorous process; it avoids missing any steps

that could lead to compromising the end goal. It can therefore be argued that using a

methodology increases the probability of success.

Peters et al. [36] define the software development lifecycle as “the period of time

beginning with a concept for a software product and ending whenever the software is no

longer available for use.” Such a methodology represents the activities, their inputs and

outputs, and any interactions during the software’s lifecycle. Various software

development lifecycle methodologies exist, including the waterfall, incremental, spiral,

prototyping, evolutionary, object-oriented and agile models.

Figure 1: Typical phases of SDLC [37]

www.manaraa.com

20

An important feature of the software development lifecycle is that it is a

comprehensive method that encompasses five primary phases of software development,

namely: investigation, analysis, design, implementation and maintenance, as depicted in

Figure 1.

Although Figure 1 illustrates these phases as being applied in a sequential and linear

manner, an iterative approach, as indicated in Figure 2, is more common. Since an

iterative process is essentially circular in nature, each phase receives input from and

provides output to another. At a high level, this circularity ensures the re-assessment of

the quality of each artifact.

Figure 2: A Typical Iterative Cycle for Developing Software Solutions[37]

The five standard phases and their related activities are discussed in sub-sections 1, 2, 3,

4 & 5.

www.manaraa.com

21

1. The Investigation Phase

During the investigation phase, the objectives, constraints and scope of the project

are specified. It is during this phase that the problem definition and high-level

requirements are established. The problem definition provides an initial description of the

problem area, and it provides a firm foundation for the rest of the project. It typically

takes the form of a written report and includes the current problems—as stated by the

various stakeholders and interpreted by the developer—the objectives of the new system,

and the scope and size of the project. The documentation produced during this phase

requires user involvement. The problem definition report can be considered as the first

stage in constructing the requirements specification document [38].

2. The Analysis Phase

Several basic activities of systems analysis need to be performed, whether

developing a new application quickly or developing a long-term project. The analysis

phase begins with a study of the documentation gained during the investigation stage.

However, systems analysis is not a preliminary study, but an in-depth study of the

detailed requirements. This phase produces a set of functional requirements that are used

as the basis for the design of a new or improved software application. The functional and

non-functional requirements are typically documented with text, use case diagrams, data-

flow diagrams and other relevant figures, depending on the methodology followed.

3. The Design Phase

Whereas the systems analysis phase describes ‘what’ a software application should

do to meet the identified requirements, the systems design phase specifies ‘how’ the

application will accomplish these requirements. The systems design consists of various

design activities that produce system specifications satisfying requirements specified in

www.manaraa.com

22

the systems analysis phase. The objective of systems design is to describe the new

software solution as a collection of modules or sub-systems. The systems design phase

will indicate ‘how’ the new software application will be implemented, by providing all

the necessary details, including data inputs, system outputs, processing steps and database

designs. An important tool for software engineers is the Unified Modeling Language

(UML) and its various diagrams, including use case, sequence and state transition

diagrams. The output of this stage consists of a complete technical specification of the

new software application [39].

4. The Implementation Phase

Once a new software solution has been designed, it must be implemented. During

the implementation phase, the software application is physically built. This requires that

program code is written and tested, and supporting documentation is produced including

complex program listings, detailed test plans and instructions for operating procedures

[39].

5. The Maintenance Phase

Once a software application is fully implemented and is being used in business

operations, the maintenance phase begins. Software maintenance may be defined as the

monitoring, evaluating and modifying of operational applications to make any desirable

or necessary improvements [37].

 Traditional Software Development

The waterfall model is the oldest known SDLC model. It was first identified in

1970 as a sequence of activities from the requirements gathering until the coding stage. It

describes a sequence of activities that begins with concept exploration and concludes

www.manaraa.com

23

with maintenance and eventual replacement, as shown in Figure 3. Peters et al. [36] refer

to it specifically as the forward engineering of software products.

Figure 3: The Traditional Waterfall Mode

The application of the waterfall model, because of its inherent weaknesses, should

be limited to those situations in which their requirements and their implementation are

well understood. Large mainframe or complex client-server systems, and systems with

highly complex technical requirements, may continue using this traditional approach.

However, since it is not practical for most of the current applications which are running

on highly networked PCs and workstations, a number of alternative software

development models have emerged over recent years.

 Alternative Software Development Models

Various software development models have evolved from attempts to optimize the

waterfall model. Modern software development processes are invariably iterative and

incremental. This means that details are typically added in successive iterations allowing

for changes and improvements to be introduced as needed. Incremental development

www.manaraa.com

24

allows for a number of releases of software modules, thereby maintaining user

satisfaction and providing important feedback to modules still under development [40].

There are many representations of the SDLC to choose from; all illustrating a

logical flow of activity from the identification of a need through to the final software

product. These methodologies use all the standards and procedures which will affect the

planning, requirements gathering, analysis, design, development and implementation of a

software system. Each SDLC model has its own strengths and weaknesses, and may

therefore be better suited to certain types of projects within an organization. The expected

size and complexity of the system, development schedule, and lifespan of a system will

affect the choice of which SDLC model to use.

1. The incremental/evolutionary model

The product is said to evolve within the incremental/evolutionary lifecycle model

because it consists of the planned development of multiple releases. Generally,

increments become smaller and implement fewer requirements each time. It typically

entails the continual overlapping of development activities and produces a succession of

software releases. However, it can be costly if it is assumed that a current release is

superseded by an improved version of the software later [41].

2. The spiral model

The spiral lifecycle model, introduced by Boehm in 1986, combines many good

features of other software development models. These include the idea of baseline

management (i.e., the documents associated with cycle phases), apparent in the waterfall

model, the overlapping phases which are found in the incremental model, and early

versions of a software application from the prototyping model. These software

development models can be coupled with the spiral model in a natural way [42].

www.manaraa.com

25

3. Extreme programming

Extreme programming is one of the earliest and most important of the Agile

methodologies. It is a relatively new concept, but is in many ways an extension of the

earlier work in prototyping and RAD. The main premise of XP is that the SDLC and its

many alternatives are too large and cumbersome. Many of them provide good control but

they typically end up adding complexity, taking more time, and slowing down

programmers. XP simplifies the development process by focusing on small releases,

similar to prototyping, that add value to the customer.

2.3 Security in the SDLC

Thinking about security at the early stages of software development by injecting

security aspects could be achieved by looking for an already-existing software

development model that provides security by design, or by trying to find some security

principles that could be injected into each phase of the SDLC.

Tompkins et al. [43] found that as far back as 1985, inadequacies in the design and

operation of computer applications were a frequent source of security vulnerabilities

associated with information systems. This led them to state that “Security concerns

should be an integral part of the planning, development and operation of a software

application.” Furthermore, they suggested that the SDLC methodology provides the

structure to ensure that security safeguards are planned, designed, developed and tested in

a manner that is consistent with the sensitivity of the information.

Tompkins et al. [43] found in the research that much of what needs to be done to

improve security is not clearly separable from what is needed to improve the usefulness,

reliability, effectiveness and efficiency of computer applications. However, they stress

www.manaraa.com

26

that while security concerns should be integrated into the SDLC, steps should be taken to

ensure that the appropriateness, adequacy and reasonableness of security safeguards be

separately identifiable activities within each stage of the SDLC. This means that system

planners, developers and users should accomplish a series of security-related actions

throughout the SDLC. The process for incorporating security safeguards within an

application, however, is not substantially different from the SDLC activities. Similarly,

Jones et al. [44] state that to meet future demands, opportunities and threats associated

with information security need to be “baked in” to the overall SDLC process. The reality

is that information security is an afterthought for many organizations. This means that,

most often, security is not an integral part of their business or information strategies, nor

is it woven into their IT projects. Jones et al. [44] are concerned that traditional firewall

systems have become less effective in preventing or detecting web-based attacks. They

suggest that central to many successful system attacks currently are poorly developed

systems and applications. Many of the security properties that are repeatedly outlined in

government and other regulations, including accountability, unique user accounts and

confidentiality, can be circumvented when software developers have not paid enough

attention to security in the design, development, deployment and maintenance of their

products. They argue that if the security considerations for systems were woven into the

SDLC, and if the developers, project managers, and system architects were given

adequate training, many of the security vulnerabilities that manifest themselves in

software applications would never appear. Security plays an increasingly important role

within systems’ development. This can be attributed to the increase in the number of

distributed applications. Breu [45] argue that security is a requirement that has to be

www.manaraa.com

27

considered at all stages of development, and which needs particular modeling techniques

to be captured.

2.4 The Important of a Systematic Literature Review

A systematic literature review is supposed to be a good guideline as a scientific

method of research in the field of software engineering. It’s also widely used and

promoted in university environments. Kitchenham describes the importance of a

systematic approach as: “Unless a literature review is thorough and fair, it is of little

scientific value” [14]. In these terms, “systematic” means that others following the exact

steps described in the article will achieve the same results and find the same resources as

the article describes. The interpretation can be different, but it should not be possible to

simply skip resources not fitting your thesis. In other words, the review can be

reproduced by a third party and all they need is the description in the review itself. This

intends to make sure that a research doesn’t support only the preferred hypothesis of the

researcher but also outlines the research that contradicts its own hypothesis. Another

reason why I chose the systematic literature review is that in software engineering we

find many studies covering different topics, but they often lack the scientific quality and

reproducibility which we can find, for example, in medical research. The approach of a

systematic literature review is to try to get more quality into the science of software

engineering. A systematic literature review requires considerably more effort than a

conventional literature review, but provides a much stronger basis for making claims

about research questions [14].

www.manaraa.com

28

During the last few years, a number of papers have focused on secure software

development, some of which have carried out reviews and comparison studies on the

issue. However, most of these reviews focused only on the secure software engineering at

the requirements engineering phase of the SDLC and others concentrated only on special

software development methodologies, such as Agile or XP. After performing preliminary

searches aimed at both identifying existing systematic reviews and assessing the volume

of potentially relevant studies, we can highlight a few works in a summary of a small

group of security approaches in the security requirement of the requirements phase, such

as [5]–[10], as well as a review of security approaches for specific domains such as web

application[11]. There were also some reviews that investigated software security in

specific development methodologies such as agile and XP [12] [13]. However, none of

them performed a review focused on software security approaches that cover all stages of

software development lifecycles in a systematic manner, and none of those reviews

documented the systematic processes for selecting the initiatives (primary studies). Thus,

there is a need to investigate the available security approaches and their limitations—as

well as the stages in which these approaches are incorporated—in a systematic manner, to

identify the gap in this area for further contribution by both the researcher and the

practitioner.

 Hence, an SLR was an appropriate research method for our research which aims

to highlight the security approaches used for incorporating security concerns into

software development lifecycles from the requirements gathering stage until maintenance

and deployment, and identifies the possible limitations of doing so from the early stages

of the SDLC.

www.manaraa.com

29

3 CHAPTER 3

LITERATURE REVIEW

In this chapter we present a brief review of the related and current literature with

respect to integrating security into software development lifecycles and the work that has

been done in this area. Secure software development and the idea of building security as

an integral part of the SDLC are discussed in Section 3.1. Section 3.2 gives an overview

of the existing work carried out so far in secure software development.

3.1 Secure Software Development

One of the key areas of concern is that of secure software development. It is

important to note that the term ‘software’ is used and not that of ‘system’, since an

information system is broadly defined as an organized combination of people, hardware,

software, communication networks and data resources. Although the focus of this thesis

is on the software aspect of an information system, it is understood that this cannot be

studied in isolation, without any consideration of the other components [46]. Data

comprise a critical asset to any organization; and they, therefore, need protection [46] .

Software applications can be seen as the agents and processors of data. Although most

organizations today have strong network perimeter controls in place, internally their

applications and data are mostly left unprotected. Unfortunately, in many cases of

software development, security is a mere afterthought [47]. According to Daud et al. [48],

security typically goes unnoticed in the early phases of the software development life

cycle. A good software engineering approach, however, is to consider security throughout

www.manaraa.com

30

the software development lifecycle. In order to achieve this, it is necessary to adopt a

process that incorporates all aspects of software development in secure software

applications. Therefore, there exists a need to update and improve the current software

development approaches. Process improvements should be added at every step of the

software development lifecycle, regardless of the particular methodology chosen, to

better focus on security issues.

Taylor and Azadegan [49] support this guideline, and state that: “Building secure

systems requires incorporating security principles early and often throughout the software

development life cycle.” Software security should be an integral part of the development

process; and it should be incorporated at every phase of the SDLC. Similarly, Microsoft

supports the idea of injecting security into the SDLC “from the ground up”, by adding

suitable security checkpoints and touch points through the software development

lifecycles.

Figure 4 SDL Overview [50]

www.manaraa.com

31

To address the need for secure software, Microsoft has adopted the Trustworthy

Computing Security Development Lifecycle (SDL), shown in Figure 4. The SDL is

intended to minimize the number of security vulnerabilities present in the design, coding

and implementation of software, and to detect and remove these vulnerabilities as early in

the lifecycle as possible. The need to consider security ‘from the ground up’ is a

fundamental principle of secure software development [50]. Furthermore, OWASP has

developed a set of CLASP best practices of software security. OWASP [52] states that:

“To be effective, best practices of software security must have a reliable process to guide

a development team in creating and deploying a software application that is as resistant as

possible to security vulnerabilities.” OWASP, therefore, recommends that the CLASP

[52] best practices should form the basis of all security-related software development

activities throughout the software development lifecycle. Also, McGraw [3] points out

that security can be integrated into software development lifecycles and proposes seven

touch points as depicted in Figure 5. These touch points are considered a small,

manageable set of best practices for software practitioners to apply during software

development, based on the artifacts they already produce. These software security best

practices have their basis in good software engineering; they involve integrating security

throughout the software development lifecycle.

www.manaraa.com

32

Figure 5 Seven TouchPoints for Software Security[3]

A number of researchers have argued the need to consider security from the early

stages of software development lifecycles, from the early requirements until coding and

maintenance [51]–[54][55]–[57]. One of the popular models for integrating security into

the SDLC in the requirements phases is misuse case, which is based on the use case

approach. Use cases document functional requirements of a system by exploring the

scenarios in which the system may be used. Scenarios are useful for eliciting and

validating functional requirements [51], but are less suited for determining security

requirements which describe behaviors not wanted in the system. Similar to anti-

goals [52], misuse cases are a negative form of use cases and thus are use cases from

the point of view of an actor hostile to the system [58]. They are used for documenting

and analyzing scenarios in which a system may be attacked. Once the attack scenarios are

identified, countermeasures are then taken to remove the possibility of a successful

www.manaraa.com

33

attack. Figure 6 shows some of the use cases and misuse case of a bank account

system. Use cases are represented as clear ellipses while misuse cases are represented

with the shaded ellipses. The <<threatens>> stereotype implies that the given misuse

case is a threat to the satisfaction of the requirements of the corresponding use

case. The notation we use for misuse cases is based on requirements of the engineering

process proposed by Sindre and Opdahl [51].

Figure 6 Use and Misuse case of a banking system[51]

Another use case approach that deals with security requirements is abuse case [59].

This approach uses UML use case diagrams for presenting unwanted behavior of a piece

of software. In this approach, the abuse case model is developed and used to present the

harmful interaction between a normal user (an actor) and the abuse cases. Also, many

approaches extended the normal UML for modeling software security such as

SecureUML and UMLsec [13] [14] among others. This is because UML does not

www.manaraa.com

34

originally cover non-functional characteristics (including security) in an explicit way. It is

possible to analyze and represent vulnerabilities in the target system, and the

vulnerabilities can be mitigated from the viewpoints of structure and dynamic behavior.

SecureUML [56] focuses on modeling access control policies and how these

(policies) can be integrated into a model-driven software development process. It is

based on an extended model of role-based access control (RBAC) and uses RBAC as

a meta-model for specifying and enforcing security. RBAC lacks support for

expressing access control conditions that refer to the state of a system, such as

the state of a protected resource. Addressing this limitation, SecureUML introduces

the concept of authorization constraints. Authorization constraints are preconditions for

granting access to an operation. UMLsec [57] is also an extension of UML which

allows an application developer to embed security related functionality into a system

design and to perform security analysis on a model of the system to verify that it satisfies

particular security requirements. Security requirements are expressed as constraints on

the behavior of the system, and the design of the system may be specified either in a

UML specification or annotated in source code.

Secure software does not mean software that is entirely hack-resilient, with no

vulnerabilities. Nor does it mean zero-defect software, since such software does not exist.

Secure software is software designed with security in mind, developed with appropriate

security controls and deployed in a secure state [46]. A common misconception is that

secure software is all about technology or code security. While writing secure code is a

critical component of software development, there is a lot more to consider. A secure

www.manaraa.com

35

software development lifecycle requires the convergence of policy, processes and people

[46]. These are described as follows:

 Policies, standards, best practices and procedures should be formulated to establish a

secure software development methodology.

 Secure software processes must ensure the incorporation of security into the

software development lifecycle, including secure programming and software risk

management.

 People are vital to any organization; they need to be educated in protecting an

organization’s data and in developing secure software.

3.2 Exiting Works

This section presents a review of the key studies conducted on the topic of secure

software development and integration security in various stages of software development

lifecycles. The objective is to summarize and discuss the results of each study, which

gives better understanding of the problem in context.

Hadavi et al. [6] have focused their review only on security requirements

engineering by reporting state-of-the-art and research challenges in security requirements.

The current knowledge in security requirements and threat modeling has been a synthesis

and has provided the first step for integrating security requirements in the software

development process. Furthermore, based on the type of activities and methods, they

presented more than twenty-three research directions and classified them into five

categories.

www.manaraa.com

36

Salini and Kanmani [60] have reviewed the literature to compare and analyze

different methods of security requirements engineering (SRE). The authors also presented

a view on security requirements types and issues. Finally, the important activities of

security requirements engineering have been presented and the identified SRE methods

are compared based on these activities.

D. MU et al. [61] have focused their research work on security requirements

engineering process and methods. Additionally, the authors examined the compatibility

of these process with respect to model-driven engineering (MDE) and risk analysis (RA).

This evaluation could help in understanding and selecting the SRE processes and

methods.

Du et al. [62] have performed a literature review and analysis of software security

requirements engineering development methodologies. The results have been reported

and investigated with respect to the literature source, research community, publication

year, research region, security understanding, activities and methods types. Furthermore,

they divided the identified approaches based on different categorizations: technologically

driven, process oriented and others, such as the extension of the Unified Modeling

Language (UML).

Khan and Zulkernine [8] conducted a comparative study that presents a complex

survey on the requirements and design phases of secure software development. Different

www.manaraa.com

37

activities that should be done in the requirements and design phases have been identified,

and comparisons between different modeling languages and process are made in this

study. This study provides the developer with guidelines that help him with selecting the

best fitting method for building secure software.

Tondel et al. [10] have conducted a related study wherein they focused on the

tasks recommended in the requirements phase. In this study the authors have surveyed

concrete techniques for eliciting security requirements. Nine techniques have been

surveyed, which are presented as a series of well-defined steps that collectively lead to

the elicitation of security requirements.

Fabian et al. [5] have introduced a conceptual framework for security

requirements methods. The aim was to compare and evaluate current security

requirements engineering approaches, such as the Secure Tropos, common criteria,

MSRA, and SREP, as well as methods based on UML and problem frames. The authors

have reviewed and assess the methods based on the proposed criteria and have classified

the identified approaches into six categories (multilateral, UML-based, goal-oriented,

problem-frame based, risk-oriented, Common Criteria-based). Furthermore, they

systematically discussed these approaches in four sections (i.e., general description,

scope, validation and quality assurance, and relation to the conceptual framework).

Different studies have been conducted to compare and analyze various software

security approaches for specific security policy such as RBAC modeling and

documentation. Matuleviĉius and Dumas [63], investigated and analyzed two modeling

www.manaraa.com

38

languages, namely SecureUML and UMLsec, that could help define security policies

through the role-based access control mechanism. This investigation will help the

modeler in selecting the appropriate technique for RBAC analysis. Also in a recent study,

Raspotnig [64] reviewed and compared techniques for safety and security requirements.

Previous systematic literature reviews such as that by Ghani and Yasin [12] have

focused on security adoption inside an extreme programming model and have explored

the models or frameworks that relate to secure XP methodologies. It further investigated

the compatibility of the extreme programming model with software security engineering.

Similarly, F. Roeser [13] conducted a systematic literature review to identify security

practices that have been developed and adopted to fit in with Agile methodology. A quick

review was done to investigate how successful these practices could be if implemented

using Agile methodology.

A systematic literature review conducted by Mellado et al. [9] focused on security

requirements engineering. The review considers studies that have incorporated security

only at the requirements stage of information system development, without paying much

attention to security across the entire software development lifecycles. Musa [11] used a

systematic review to investigate the various security development models used to secure

web applications, security approaches used in the process, and the stages in the

development model in which the approaches or techniques are emphasized. Moreover,

one recent research involving a systematic mapping study was conducted by Dasanayake

[65] to identify various aspects of addressing concerns throughout the software

www.manaraa.com

39

development lifecycles and to study most considered concerns and their variations in the

SDLC. The considered concerns in this study included security, reliability,

maintainability and performance.

Our work is on alignment with the previous study in identifying the approaches

for secure software development from the requirements gathering stage until the

maintenance stage. Nevertheless, and to the best of our knowledge, no SLR has been

done in this area before, which covers the entire software development lifecycles

(SDLC). Software security is a somewhat mature area and both industry and researchers

are attracted to it. In the field of industry, this topic is of interest in order to avoid severe

losses due to the consequences of insecure software. Similarly, this topic is attractive to

the researcher as this area is new and there are many gaps that need to be discussed in a

systematic way for enhancement and innovation. Both industry and academia can benefit

from this thesis. In academia, this thesis can provide an understanding of software

security and the different approaches that can be incorporated in different phases of

SDLC, as well as the security activities that can be aligned with normal development

activities. Also, many interested researchers and practitioners can benefit from this work

by contributing to this area through exploiting the gaps and the limitations identified in

this work. For example, one researcher may propose an approach that helps security

testing as there are no more approaches identified at this stage. Furthermore, most of the

approaches in the coding stage do not cover more vulnerabilities, so new interested

researchers can contribute to this area by enhancing these approaches to cover more

vulnerabilities. Moreover, the academic institutions can benefit from this work by

www.manaraa.com

40

updating their programs in computer science and software engineering majors by

teaching their developer the appropriate security practices and guidelines that help them

in building secure software. Finally, in industry, this thesis can help in choosing one or

more of the security approaches that can be injected in the appropriate stage to build

secure software and apply these approaches in the real industrial environment to see their

effectiveness.

The main contribution of this study is to add to the body of knowledge of both

disciplines: security and secure software development lifecycles. Furthermore, we are

going to assist software development organizations in better understanding the limitations

of existing software security approaches used in the software development lifecycle and

to provide other researchers with a firm basis on which to develop of the new software

security approaches. Moreover, comprehensive mapping studies of the secure software

development approaches and in which stage these approaches are emphasized, will be

conducted. Additionally, the most active researcher in software security and the main

venue of publication of software security will be identified. Finally, the gap and

limitations in the existing approaches will be studied and analyzed.

www.manaraa.com

41

4 CHAPTER 4

RESEARCH METHODOLOGY

We followed two complementary methods to achieve maximum coverage and to

make our research more comprehensive as depicted in Figure 7. In order to address our

research questions, we applied the systematic literature review (SLR) and snowballing. In

the first method, we identified software security approaches and its limitations that are

used for incorporating security concerns into software development lifecycles (SDLC)

and the stages in which these approaches are emphasized via a systematic literature

review. The most active researcher and publication venue are also identified. We then

used snowballing as a second method to find the possible limitations and challenges for

incorporating security concerns into the SDLC. We discussed each of the research

methods in detail in the following sections. Section 4.1 explains the whole SLR process,

which includes developing an SLR protocol, cleaning and processing the findings via

initial and final study selection, validation and filtration using quality assessment

techniques, and data synthesis and proofreading. Section 4.2 explains in summary about

the snowballing method for finding the possible limitations of incorporating security

concerns and existing software security approaches in the SDLC.

www.manaraa.com

42

Figure 7 Research Methodology

4.1 Systematic Literature Review (SLR)

We have followed the SLR guidelines proposed by Kitchenham and Charters for

performing an SLR for data collection, since it is a well-defined and rigorous method to

identify, evaluate and interpret all the relevant studies regarding a particular research

question, topic area or phenomenon of interest. A systematic review is a defined and

methodical way to summarize the empirical evidence concerning a treatment or

technology, to identify missing areas in current research or to provide background in

order to justify new research. Systematic literature review requires considerably more

effort than conventional literature review, but provides a much stronger basis for making

claims about the research questions [14]. Hence, an SLR was an appropriate research

method for our research, which aims to highlight the security approaches used for

www.manaraa.com

43

incorporating security concerns into software development lifecycles from the

requirements gathering stage until maintenance and deployment, and identifies the

possible limitations of doing so from the early stages of the SDLC.

A systematic literature review protocol was written to provide the details of all steps

that we have followed in our study; the major steps are described as the following:

 Constructing a search strategy and then performing the search for relevant studies.

 Study selection process.

 Apply quality assessment for the selected study.

 Conducting data extraction, mapping then analysis of the extracted data.

The details of these summarized points are depicted in the next figure and will be

described in the next sub-sections.

www.manaraa.com

44

`

End SLR

Start SLR

Figure 8 selection process

Write the Review Report

Validate the Report

R
ep

o
rtin

g

Identify need of the review

Research Questions

Search strategy (string) & (DB)

Inclusion and exclusion criteria

Quality assessment criteria

Data Extraction form

Data synthesis strategy

P
lan

 th
e R

ev
iew

Identify Relevant Research

Select Primary Studies

Assess Study Quality

Extract Required Data

Synthesis Data

C
o
n
d
u
ct th

e R
ev

iew

www.manaraa.com

45

RQ1: What approaches are available for secure software development?

RQ2: In which stage of the software development lifecycles are the software security

approaches incorporated?

RQ3: Which researchers are most active in software security?

RQ4: What are the main venues for publications on software security?

RQ5: What are the limitations of each of the software security approaches used in the

software development lifecycles?

4.1.1 Search Strategy

The strategy used to construct search terms is as follows:

a) At the beginning we have derived the major search terms from the research

question by identifying the population, intervention and outcome.

b) We then identified alternative spelling and synonyms for the derived major terms

to ensure that we don’t miss any related study.

c) We have verified and checked the keywords in relevant papers.

d) We have used Boolean operators: “AND” to concentrate the major terms, and

“OR” to concentrate synonyms and alternative spelling, where the database

allows.

e) Finally, we have integrated the search string into a summarized form, if required.

www.manaraa.com

46

Result of a

The following details of the population, intervention, outcome of relevance and

experimental designs of interest to the review will form the basis for the construction of

suitable search terms later in the protocol.

Population: is the application area, in this context it is the software security

Intervention: the existing approaches for secure software development lifecycles

Outcome of relevance: secured software development lifecycle approaches, secured

SDLC processes, models of security.

Experimental design: SLR, empirical studies, case studies, theoretical studies, expert

observation and expert opinions.

The above details for the RQ1 and the result of RQ1-4 will come automatically from the

identified studies in RQ1. However, snowballing has been used for answering RQ5 as we

mentioned earlier in this chapter.

Result of b

Approach:

"secure development methodologies" OR "security principles" OR "security standards"

OR "security practice" OR "framework" OR "approach" OR "technique" OR "model"

OR "method" OR "tool" OR "development “practices" OR "development guidelines" OR

"best practice" OR "engineering process" OR "security activities" OR "development

cycle" OR "development guideline" OR "development principle" OR "development

www.manaraa.com

47

procedure" OR "development approach" OR "development lifecycle" OR "development

model" OR "development framework" OR "development practice"

Software security:

"software quality " OR "software safety" OR "information security" OR "software

vulnerability" OR " application security” OR" "secure" OR "insecure" OR "software

security" OR "confidentiality" OR" authorization" OR "authentication" OR "integrity"

OR "access control" OR "secure system" OR "secure application" OR "secure software"

OR "authentication" OR "privacy" OR "access control" OR "confidentiality" OR

"secrecy" OR "integrity" OR "availability" OR "auditability" OR "authorization" OR

"threat model" OR "attack model" OR "intrusion detection" OR "information flow" OR

"encryption"

Software development lifecycles:

"software development" OR "systems development" OR "software development

lifecycle" OR "SDLC" OR "software development process" OR "software development

activities" OR “early development stages” OR "engineering process" OR "software

development methodologies" OR "application development process" OR "secure IS

development"

Result of c

Approach:

"development guideline" OR "development principle" OR "development procedure" OR

"development approach" OR "development lifecycle" OR "development model" OR

"development framework" OR "development practice”

www.manaraa.com

48

Software security:

Software vulnerability OR Application security OR Secure OR Insecure OR Software

security

Software development lifecycles:

"secure software development" OR "secure systems development" OR "secure software

development life cycle" OR "systems development lifecycle" OR "SDLC" OR "software

development process" OR "secure IS development" OR "software development

lifecycles"

Result of d

("development guideline" OR "development principle" OR "development procedure" OR

"development approach" OR "development lifecycle" OR "development model" OR

"development framework" OR "development practice”) AND (software vulnerability OR

application security OR secure OR insecure OR software security) AND ("secure

software development" OR "secure systems development" OR "secure software

development life cycle" OR "systems development lifecycle" OR "SDLC" OR "software

development process" OR "secure IS development" OR "software development

lifecycles")

Based on the available access, the following digital libraries were used:

www.manaraa.com

49

 ACM Digital Library. (http://dl.acm.org)

 IEEE Explore. (http://ieeexplore.ieee.org)

 Science Direct. (http://www.sciencedirect.com)

 Google Scholar (http://scholar.google.com/)

 Springer Link. (http://link.springer.com)

 John Wiley Online Library. (http://onlinelibrary.wiley.com/)

Since these libraries differ in their search mechanisms and capability, we tailored our

search string accordingly.

4.1.2 Publication Selection

4.1.2.1 Inclusion Criteria

The inclusion criteria we have identified to determine which part of literature

returned by the search string would be used for data extraction.

 Studies that are reported in English language only.

 Papers published in any of the primary or secondary resources mentioned

previously.

 Studies focused on answering our research question.

 Source is a research paper, proceeding, book chapters, lecture note in computer

science or journal article.

 Studies focused on incorporating security form the beginning of software

development (i.e. from requirements gathering until deployment stage), by

proposing security concerns or approaches for building security in.

http://dl.acm.org/
http://ieeexplore.ieee.org/
http://www.sciencedirect.com/
http://scholar.google.com/
http://link.springer.com/
http://onlinelibrary.wiley.com/

www.manaraa.com

50

 Any study that focused on some kind of approaches and techniques to follow in

order to carry out security activities during the phases of software development.

4.1.2.2 Exclusion Criteria

 Studies that were not relevant to the research questions.

 Manuscripts written in non-English language were excluded.

 Studies with poor English were excluded as the sentences may cause

ambiguity or exposes conflicts of ideas.

 Graduation projects, Master’s thesis and PhD dissertations were excluded as

they tend to be much more focused and there is no evidential proof of any

review.

 The paper only mentions security as a general introductory term.

 Studies focused on software security in the later stages after deployment.

 Studies focused on security through penetrate and patch or that concentrated

on secure software using external devices such as firewalls and other

protection mechanisms.

 Studies that focused on information security mechanisms such as encryption

and decryption.

4.1.3 Selection Primary Sources

The selection process had mainly two phases as planned in the review protocol:

an initial selection from the search results based on reading the title and abstract of the

paper; then by final selection from the first step by reading the full paper. These

processes are depicted in Figure 9.

www.manaraa.com

51

Search publications from the identified

resources in SLR protocol

Initials selection by reviewing the title,

keywords, and abstract

Verify against inclusion/exclusion

criteria

Checked against quality assessment

criteria

Final selection based on reading the full

text

Figure 9 Selection Process

www.manaraa.com

52

The total number of results retrieved after inputting the search terms in the

electronic databases are shown in Table 1 Primary Studies Selection from different

resources. After the initial round of screening by reading the title and abstract, about 184

studies belonging to five different electronic research databases were selected. After the

full text readings in the second screening, 118 primary studies were finally selected,

which met our inclusion and quality criteria.

Table 1 Primary Studies Selection from different resources

Resources
Total Result Initial Selection Final Selection

IEEEXplore 1880 75 53

ScienceDirect 506 35 15

SprinerLink 437 39 25

ACM 140 28 24

John Wiley 93 7 1

Total

3056

184

118

4.1.4 Quality Assessment

In addition to the inclusion/exclusion criteria, the quality of each primary study

was assessed by the quality checklist for quantitative studies. The quality assessment was

performed after we finished the final selection of publications; for any paper to pass the

initial phase, a quality assessment was done. We have to assess the quality of the

literature selected after final selection for quality. The quality assessment activity for the

www.manaraa.com

53

relevant literature was carried out at the same time during the extraction of relevant data

so as to ensure that a valuable contribution was made to the SLR. We will detail a quality

assessment checklist that will provide the means to quantitatively asses the quality of the

evidence presented by these studies. However, these checklists are not meant to be a form

of criticism criteria, as such will be documented. These quality criteria were prepared as

shown in Table 2. Each question in the quality checklist was answered with ‘Yes’ or

‘No’, and marked by 1 and 0 respectively. The final score of the study ranged from 0 to

6, where 0 is the lowest score, representing lower quality, and 6 is the highest score,

representing high quality studies, according to our definitions. A threshold value for

excluding a study from the review was set at 3 points. Since the lowest score for the study

was 4, all the studies were included on the basis of the quality checklist.

Table 2 STUDY QUALITY ASSESSMENT TABLE

Criteria Notes

The approach is explained sufficiently.
Yes =1

No =0

Evidence of the approach is documented.
Yes =1

No =0

Does the study state clear, unambiguous aims of the research?
Yes =1

No =0

Is there any empirical evidence on the findings?
Yes =1

No =0

Is the paper well/ appropriately referenced?
Yes =1

No =0

www.manaraa.com

54

Is the paper legible and well written?
Yes =1

No =0

4.1.5 Data Extraction

After the final selection of primary studies, depending upon the quality

assessment criteria, we have to start with the data extraction phase of the systematic

literature review process. We used the data extraction form to extract the data. The data

was extracted by a single reviewer, who was alone responsible for data extraction, and

then assessed by a PHD supervisor in a random manner. Table 3 represents the data

extraction form which was used for the purpose of extracting relevant data from primary

studies.

The data extracted from the primary studies was saved as a Microsoft Word

document in <paper id> _ <author name> _ <Year of publication>, while a tool called

Mendeley was used for reviewing and controlling the selected primary study.

Table 3 Data Extraction Form

Data Item Value
Supplementary

Notes

Study Information Data

Paper ID

Title

Date of publication

www.manaraa.com

55

Author

Year of publication

Reference type Journal/Conference/Thesis/Unpublished

Geographical location

University/organization

Publisher

Methodology/ Type of

study

SLR/Interview/Case

Study/Report/Survey

Data Relevant to Answering Research Questions

Security Approach

SDLC phase

Venues for Publication

Active Researcher

4.1.6 Data Synthesis

After the extraction of data we used the data synthesis form as shown in Table 4,

to summarize and compile the extracted data from the primary studies so as to answer

each of the research questions. This form helps to carry out various types of statistical

analyses so as to draw a conclusion.

www.manaraa.com

56

Table 4 Data Synthesis Form

RQ1 - 4

Security

Approach

SDLC

Stage

Venue of

Publication

Type of

the

Study

Geographical

Location

Reference

Type

Active

Researcher

Due to the nature of the research questions we are going to synthesis the extracted

data by checking the most frequent approaches that were used for incorporating security

concerns into the SDLC and the most frequent phases, where the security approaches are

emphasized. This categorization will help in identifying the most neglected stage in terms

of security so the new room will be opened for further research.

Additionally, we are going to analyze studies based on the countries where they

were conducted, the active researchers, and on the publication venue where the

publication channel of the study.

4.2 Snowballing

With our search string used in the SLR we could not identify enough number of

papers for RQ5. So it was decided to use alternative search, i.e., snowballing.

In addition to the searches in the databases using search strings, snowballing from

the list of references of the identified articles was used as another method in this research

(i.e., to identify additional relevant articles through the reference lists of the articles found

www.manaraa.com

57

using the search strings and articles identified through manual search using Google

Scholar to answer the RQ5. Both backward snowballing from the lists of references and

forward snowballing which is finding the citations to the papers, were included in this

research.

The snowballing search method [66] can be summarized in three steps: 1) Start the

searches in the leading journals and / or the conference proceedings to get a starting set of

papers. 2) Go backward by reviewing the reference lists of the relevant articles found in

step 1 and step 2 (iterate until no new papers are identified); and 3) go forward by

identifying articles citing the articles identified in the previous steps. Based on Webster

and Watson [66] as well as Wohlin [67], the starting point for the backward snowballing

research approach is the analysis of main contributions to the topic. Thus, we identified

our starting sets of papers using the common primary studies that have been identified

through databases automatic search using a search string that presented common

approaches found in the literature, such as misuse case, Secure Tropos, KAOS, UMLsec,

secureUML and static and dynamic analysis among others. Also, the systematic literature

reviews that have been identified through manual search using Google Scholar are

included in the starting sets of papers. A manual search through Google Scholar using

terms such as “challenge" OR "limitation" OR "problem" OR "difficulties" OR "trouble"

OR "issue" OR "weakness” and integrated with terms such as “secure software

development”, “software security”, “secure early stage of software development stages”

OR “secure information system development” were used to find starting sets. The

snowballing procedure is outlined in steps in Figure 10[67].

www.manaraa.com

58

Figure 10 The Snowballing Process [67]

www.manaraa.com

59

We retrieved approximately fifty-three papers using the snowballing process. After

applying the selection criteria, we selected forty-seven papers for data extraction and

analysis. Total 165 primary studies from SLR and Snowballing were selected that met

our inclusion criteria and quality assessments are shown in Table 5. For the others,

meaning this articles doesn’t include to any of the mention digital library and it comes

from different journals and conferences.

Table 5 Results (SLR + Snowballing)

Resources
Total

Result(SLR)

Initial

Selection(SLR)

Final

Selection(SLR)
Snowballing Duplication

IEEEXplore 1880 75 53 18 2

ScienceDirect 506 35 15 3 1

SprinerLink 437 39 25 6 1

ACM 140 28 24 5 1

John Wiley 93 7 1 - 0

Others - - - 15 0

Total

118 47 5 3056 184

Total 165

www.manaraa.com

60

5 CHAPTER 5

RESULTS AND ANALYSIS

In this chapter we present the results and analysis from our two-phased research

methodology. Section 5.1 explains the findings from the SLR that answer our research

questions mentioned in the protocol. Section 5.2 answers the missing articles regarding to

RQ5, which aimed to identify the limitations and challenges of incorporating security

into software development lifecycles.

5.1 Systematic Literature Review (SLR) Results

This section presents the initial SLR-based literature survey results. The total

number of results retrieved after inputting the search terms in the electronic databases is

shown in Table 1. After an initial round of screening by title and abstract, about 184

studies belonging to five different electronic research databases were selected. After full

text readings in the second screening and the application of inclusion and exclusion

criteria, about 118 primary studies were finally selected. We analyzed each publication

and extracted about 54 relevant approaches for incorporating security into different stages

of SDLC. These approaches have been categorized (for better understanding) mainly into

seven main categories shown in Table 6. Also, the list of 54 identified approaches for

injecting security into SDLC and the phases in which this approach are incorporated

shown in Table 7. (For more details of these security approaches please see Appendix

A).

www.manaraa.com

61

Table 6 Approaches Categorization

Group Approach

Reverse approach

(Consider security requirements in a reverse way, e.g.

identifying problems or attacks that may subvert the security

of software systems).

Abuse frame

Misuse cases

Abuse case

Essential Use case

Process Oriented

(Proper steps, procedures activities to guide the

participants.)

SREF

Apvrille and Pourzandi

Van Wyk and McGraw

Microdoft SDL

 Software Security Assessment

Instrument (SSAI)

S2D-ProM

SREP

ISDF

SQUARE

CLASP

AEGIS

UML-based approaches

(Approaches that make use the Unified Modeling Language

notations)

UMLintr

Georg-AO

Gomaa-UML

YU-AC

FDAF

Kim-Access Control

Mariscal-AC

www.manaraa.com

62

Medina-DB

PbSD

UMLsec

SecureUML

UML state charts

Hoisl-SOA

UML- AC

UMLS

Notations

(Specify and present security specification (security

properties, attack specification, security requirement) using

new proposed notations.)

ADM-RBAC

AMF

Xu-Petri

Giordano-Access Control

Buyens-LP

SECTET

AsmLSec

AsmL

SecureSOA

Vulnerabilities-Mitigation approaches

 (Dealing with common security vulnerabilities in the coding

phase such as BOF, XSS, SQLI ...)

Static analysis

Dynamic analysis

Hybrid analysis

Secure programming

Program transformation

Patching

Goal-oriented Approaches KAOS

www.manaraa.com

63

Extended for goal oriented modeling approaches that

focuses on describing both organizational environment of a

system and a system itself. Also, it extended for specifying

the anti-goal and constrains of the systems.

SecureTropo

Others

(specific to certain technology or development methodology)

HTTPUnit

Vela-DB-XML

SRS-Tool

Agile Security Framework(ASF)

STS-Tool

Gupta- Framework

FDD

Table 7 List of Security approaches

Approach Phase

References Freq.

1
Abuse Frame Requirement [68] 1

2
SREF Requirement [69] [70] 2

3 Apvrille and Pourzandi Across [54] 1

4 Van Wyk and McGraw Across [71] 1

5 Microdoft SDL Across [50] [72] 2

6 Software Security Assessment

Instrument (SSAI) Across
[73] 1

7 S2D-ProM Across [74] 1

8 Misuse cases Requirement [51] [75] 2

9

Abuse case

Requirement and

Design
[59] 1

10 UMLintr Requirement [76] 1

11 AsmLSec Requirement [77] 1

12 ADM-RBAC Design [78] 1

13 AMF Design [79] 1

www.manaraa.com

64

14 Georg-AO Design [80] 1

15 Gomaa-UML Design [81] 1

16 SecureSOA Design [82] [83] 2

17 UMLsec Design [84] [85] [53] [57] [55] [86] 3

18 Xu-Petri Design [87] 1

19 YU-AC Design [88] 1

20
KAOS Requirement [52] 1

21

 HTTPUnit

Requirement,

design , coding
[89] 1

22

Dynamic analysis Coding

[90] [91] [92] [93] [94] [95]

[96] [97] [98] [99] [100]

[101] [102] [103] [104] [105]

[106]

17

23

Static analysis Coding

[107] [108] [109] [110] [111]

[112] [113] [114] [115] [116]

[117] [118] [119]

13

24

Hybrid analysis Coding

[120] [121] [122] [123] [124]

[125]

6

25
Secure programming Coding [126] [127] [128] [129] [130] 5

26 Program transformation Coding [131] [132] [133] [134] 4

27
Patching Coding [135] [136] [137] [138] 4

28 SREP Requirement [139] [140] [141] 3

29

SecureTropo

Requirement,

Design , Coding
[142] [143] 2

30 FDAF Design [144] [145] 2

31 Giordano-Access Control Design [146] 1

32
Kim-Access Control Design [147] 1

33
Mariscal-AC Design [148] 1

34 Medina-DB Design [149] [150] [151] 3

35
PbSD Design [152] [153] 2

36 Vela-DB-XML Design [154] 1

37 SecureUML Design [56] [155] [156] 3

38
UML state charts Requirement [157] 1

39
SRS-Tool Requirement [158] 1

40 SECTET Design [159] [160] 2

www.manaraa.com

65

41
Buyens-LP Design [161] 1

42
Hoisl-SOA Design [162] 1

43
UML- AC Design [163] 1

44 UMLS Design [164] 1

45 Agile Security

Framework(ASF) Across

[165] 1

46
ISDF Across [166] 1

47 EUC Requirement [167] 1

48 STS-Tool Requirement [168] 1

49 Gupta- Framework Requirement [169] 1

50
SQUARE Requirement [170] [171] 2

51 CLASP Requirement [172] [173] 2

52 AEGIS Requirement [174] 1

53 AsmL Requirement [175] 1

54
FDD

Requirement -

Design
[176] 1

 Total 118

5.1.1 Approaches Frequency Analysis

Table 8 Approaches Freq. Analysis

Approach Freq.(118) %

1 Dynamic analysis 17 14.41

2 Static analysis 13 11.02

3 UMLsec 6 5.08

4 Hybrid analysis 6 5.08

5 Secure programming 5 4.24

6 Program transformation 4 3.39

7 Patching 4 3.39

8 SREP 3 2.54

9 Medina-DB 3 2.54

10 SecureUML 3 2.54

11 SREF 2 1.69

12 Microdoft SDL 2 1.69

www.manaraa.com

66

13 Misuse cases 2 1.69

14 SecureSOA 2 1.69

15 SecureTropo 2 1.69

16 FDAF 2 1.69

17 PbSD 2 1.69

18 SECTET 2 1.69

19 SQUARE 2 1.69

20 CLASP 2 1.69

21 Abuse Frame 1 0.85

22 Apvrille and Pourzandi 1 0.85

23 Van Wyk and McGraw 1 0.85

24
Software Security Assessment Instrument

(SSAI) 1 0.85

25 S2D-ProM 1 0.85

26 Abuse case 1 0.85

27 UMLintr 1 0.85

28 AsmLSec 1 0.85

29 ADM-RBAC 1 0.85

30 AMF 1 0.85

31 Georg-AO 1 0.85

32 Gomaa-UML 1 0.85

33 Xu-Petri 1 0.85

34 YU-AC 1 0.85

35 KAOS 1 0.85

36 HTTPUnit 1 0.85

37 Giordano-Access Control 1 0.85

38 Kim-Access Control 1 0.85

39 Mariscal-AC 1 0.85

40 Vela-DB-XML 1 0.85

41 UML state charts 1 0.85

42 SRS-Tool 1 0.85

43 Buyens-LP 1 0.85

44 Hoisl-SOA 1 0.85

45 UML- AC 1 0.85

46 UMLS 1 0.85

47 Agile Security Framework(ASF) 1 0.85

48 ISDF 1 0.85

www.manaraa.com

67

49 EUC 1 0.85

50 STS-Tool 1 0.85

51 Gupta- Framework 1 0.85

52 AEGIS 1 0.85

53 AsmL 1 0.85

54 FDD 1 0.85

Total 118 100.00

Table 7 answers our first research question (RQ1) i.e. the security approaches that

have been used to incorporate security into software development lifecycles present in the

published literature. Also, it answers the second research question (RQ2) regarding the

phase in which the identified security approaches are incorporated (i.e. requirement,

design, coding). (For more details about these approaches please see Appendix A).

Table 8 depicts the frequency distribution of various security approaches, as cited in

the literature. Based on our study, dynamic analysis and static analysis approaches were

cited the most with 14.41 % and 11.02 % respectively. These approaches are one of the

most proactive security vulnerability detection methods, including buffer overflow and

SQL injection whether by execution of the code, as in dynamic analysis, or a building

model analysis of the artifact without execution, as in static analysis (for more

information please see Appendix A). These percentages may be due to insecure coding

guidelines and practices such as SQLAI, or as a result of improper input validation.

Furthermore, this is probably due to the fact that many vulnerabilities present in the

requirement and design stages will appear again, especially if they are not captured when

they are presented. These well-known approaches are used to detect security

vulnerabilities such as BOF, XSS and SQLI in the coding phase of SDLC in a proactive

www.manaraa.com

68

manner, i.e. before the software release. The other approaches range from process,

modeling language and notations to frameworks ranked in the list, with percentages

between 5.08 % and 0.85%.

5.1.2 Lifecycles Phases Frequency Analysis

Table 9 freq. of studies in security SDLC

Lifecycle Stage Frequency %

Coding 52 41.6

Design 39 31.2

Requirement 27 21.6

Across 7 5.6

Total 125

Our second research aspect focuses on the phase in which the security approaches

are incorporated (i.e. requirement, design, coding) and which stage is covered most by

studies published in the literature. Based on our review, the stage in the development

lifecycle where a security approach is emphasized varies in different studies. Table 9

shows that a significant number (about 41.6%) of studies in this review considered

security checks around the coding stage of development. This is probably because attacks

are more likely as a result of improper coding practices, such as SQL injection attacks,

buffer overflow (BOF) and cross site scripting (XSS). Alternatively, it may be that

vulnerabilities introduced during requirements and design will manifest themselves in

code if not detected when they are introduced. However, applying security checks across

the entire lifecycle has received less attention and is only considered in 7 out of 125

www.manaraa.com

69

primary studies. Similarly, there has not been an empirical study (to the best of our

knowledge) that assesses whether concentrating security around coding is sufficient or

not. However, adding security checks across the entire lifecycle, which also includes the

coding stage, will guarantee more assurances than if they are only introduced during the

coding stage. Also, we can observe from Table 9 that no results have been identified in

the testing phase. This may be due to the fact that, when the software enters the testing

phase, all its functionalities are built so we cannot prevent security flaws and bugs and

make the software secure, all we can do is find the security issues that exist in the

software. Furthermore, in the testing phase the tester needs to put himself in the position

of the attacker, which explains how hard the security testing phase is. Similarly, in the

maintenance phase, the only thing we can do is find any security issues that exist in the

software.

5.1.3 Active researchers Analysis

Table 10 Active researchers Freq. Analysis

Author #Papers

Jan Jürjens 6

 Zulkernine, M. 6

 Bashar Nuseibeh 4

 Eduardo Fernández-Medina 4

Daniel Mellado 3

Best, B. 2

Charles B. Haley 2

Shahriar, H. 2

 Mario Piattini 2

The third research aspect focuses on the most active researchers who contributed to

the research topic, which will also help to answer (RQ3). To get an overview of active

www.manaraa.com

70

researchers in this area, we followed a common metric in software engineering [177].

This metric works by counting the number of papers published by each author. To keep

the brevity of the ranking results, we showed the top authors (in order) who have

published at least 2 papers in the pool in Figure 11.

Figure 11 Top 9 researchers in the area

The competition is close, as the second and third ranks tie. The ranking is as

follows: Paolo Jan Jürjens and Zulkernine, M. (6 papers each), Bashar Nuseibeh and

Eduardo Fernández-Medina (4 papers), Daniel Mellado (3 papers) and Best, B., Charles

B. Haley, Shahriar, H., and Mario Piattini each with 2 papers as shown in Table 10. (For

more information about the active researchers who contributed to the research topics

please see Appendix A.)

0 1 2 3 4 5 6 7

Jan Jürjens

Zulkernine, M.

Bashar Nuseibeh

Eduardo Fernández-Medina

Daniel Mellado

Best, B.

Charles B. Haley

Shahriar, H.

Mario Piattini

papers

www.manaraa.com

71

5.1.4 Publication Venues and Sources Types Analysis

The fourth research aspect focuses on the publication venues and source types of

the published primary studies, which will help to answer (RQ4) (i.e. the most active

venue of publication that contributed to software security).

Table 11 Distribution of selected studies over source types.

Publication Channel frequency %

Conference 54 45.76

journal 33 27.97

Symposium 13 11.02

Book chapter 10 8.47

Lecture note in computer science 5 4.24

Workshop 3 2.54

Total 118 100.00

The selected studies were published in six publication types: conferences, journals,

symposiums, book chapters, lecture notes in computer science, and workshops. Table 11

shows the distribution of selected studies over publication types. Conferences, journals,

symposiums and book chapters are the four main publication types with 45.76% (54

studies), 27.97% (33 studies), 11.02% (13 studies) and 8.47% (10 studies) of the selected

studies, respectively. Only 5 studies were published as lecture notes and 3 as workshops,

as shown in Table 11.

www.manaraa.com

72

Figure 12 Publications venue distribution

Table 12 Top five Publication venues of identified articles

Publication Venue Type No. %

ICSE 2007. 29th International Conference on Software

Engineering, 2007.
Conference 6

5.08

ICSE Workshop on Software Engineering for Secure Systems,

2009. SESS '09.
Conference 5

4.24

Proceedings. Eighth IEEE International Conference on

Engineering of Complex Computer Systems, 2002.
Conference 4

3.39

COMPSAC '08. 32nd Annual IEEE International Computer

Software and Applications, 2008.
Conference 4

3.39

Software & Systems Modeling Journal 4

3.39

Table 12 presents the top five publication venues of some the selected studies,

their types, the number of studies, and the corresponding proportion against the total

number of selected studies. Overall, 82 publication venues are identified that cover

different areas of computer science, such as software engineering, security, networking,

etc.; which means this study topic has received wide attention in the research community.

46%

28%

11%

8%
4%3%

Pulication venue

conference

journal

Symposium

book chapter

lecture note in computer
science

workshop

www.manaraa.com

73

One observation that can be made is that there is one leading conference (ICSE),

workshop (SESS), and journal (Software & Systems Modeling) respectively as the

publication venues for this study topic. Also, we can note that these three venues are in

the field of software engineering. This demonstrates the importance of software security

research in software engineering and other related fields. (For more details of these all

identified publication venues please see Appendix A)

5.1.5 Demographic Analysis

Another aspect that needs to be discussed is the demographic analysis (country and

continents) of identified publications that have contributed to research topic.

Table 13 Country frequency analysis

Country Freq. %

USA 43

32.58

Canada 12

9.09

Germany 11

8.33

UK 9

6.82

Spain 9

6.82

Italy 8

6.06

Austria 6

4.55

We ranked the most active countries based on the affiliation of authors who have

published software security approaches papers. The rationale for this ranking is to know

which researchers from which countries (as a group) focus more on software security

(building secure software). If an author had moved between two or more countries, we

www.manaraa.com

74

attributed each of his/her papers to the explicit affiliation information on top of each

paper. If a paper was written by authors from more than one country, we incremented the

counters for each of those countries by one.

Figure 13 Country contributed to Software Security

It is important to note that Table 13 and Table 13 shows primary studies

originating from 28 different countries, because it is vital to examine research from

0 5 10 15 20 25 30 35 40 45 50

USA

Canada

Germany

UK

Spain

Italy

Austria

France

India

Korea

Switzerland

Norway

Israel

China

Chile

UAE

Tunis

Taiwan

Sweden

Saudi Arabia

Pakistan

Netherlands

Mexico

Malaysia

Japan

Cuba

Belgium

Australia

Country Analysis

% Freq.

www.manaraa.com

75

different social and organizational cultures. The results are shown in Table 13 and Table

13. American researchers have authored or co-authored 32.58 % (43 of 133) of the

articles in the pool. Authors from Canada, Germany, UK, Spain, Italy and Austria (with

12, 11, 9, 9, 8 and 6 articles, respectively) stand in the second, third, fourth and fifth

ranks. Most of the remaining articles were written by researchers from various countries

that contributed between 2 and 4 articles. This indicates that more studies from different

countries are needed to account for cultural and social differences that may have an effect

on research findings.

Table 14 Continent Analysis

Continent Freq. %

Americas 57

42.86

Europe 57

42.86

Asia 17

12.78

Australia 1

0.75

Africa 1

0.75

Total 133

100.00

For the continents analysis, Table 14 illustrates the distribution of primary study

which proposed security approaches over the continents. There are 57 articles are written

by authors from America. Similarly, 57 from Europe while small amount of 17 papers are

from Asia. Also, the lowest number of papers have been produced in Australia and

Africa. This is probably due to that the countries in this regions pay more attention to

software security as the software systems are more widely used in daily life.

www.manaraa.com

76

5.1.6 Study Strategy and institutional Analysis

Table 15 Study Strategy Used

Study Types Count

Case study 54

Experiment 33

others 31

Total 118

Another aspect that we focused on is the different type of study strategies used to

propose security approaches presented in the literature. Table 15 gives a summary of each

type of study strategy found in the published literature. We have grouped the papers

found through SLR into three study strategies, which are commonly used in empirical

software engineering as, shown in Table 15. These study strategies were classified as

case studies or experiments. In addition, some articles that could not be clearly classified

with the above categories were placed in the ‘other’ category and the count of these

articles was 31. The ‘other’ category mainly included articles that have developed a new

tool, evaluated it and demonstrated it. Furthermore, some of studies developed a new

programming language that somehow provides security by its nature. We can observe

from the search strategy type, there are no more systematic literature reviews or

www.manaraa.com

77

systematic mapping studies in this topic, which supports our contribution that few SLRs

contribute to the topic and no SLR covers all the SDLC.

Table 16 Institution Analysis

Institution Country Freq.(139) %

Queen's University Canada 10 7.19

University of Castile–La Mancha (UCLM) Spain 7 5.04

The Open University UK 5 3.60

Univ. of California USA 4 2.88

Virginia University USA 4 2.88

Also, an institutional analysis has been conducted to see an institution’s

contribution to the research topic. In the 118 papers reviewed, 139 distinct institutions,

ranging from universities, research institutes and industrial organizations have been

found. Table 16 illustrates popular institutions that have contributed to the topic with

more than 3 papers. The Queen’s University in Canada obtained the first rank, followed

by University of Castile–La Mancha (UCLM) in Spain, with 7.19% and 5.05%

respectively. The rest of the institutions contributed between one and three publications

on the topic.

www.manaraa.com

78

5.2 Snowballing and SLR Results for RQ5

This section presents the initial snowballing-based literature survey results. Of the

total number of results retrieved by both types of snowballing (i.e. backward and forward

snowballing), 47 studies presented the limitations and challenges of incorporating

security into different stages of SDLC. In addition to searches of in the databases using

the search string, snowballing from the list of references of the identified articles was

used as another method in this research, i.e. to identify additional relevant articles

through the reference lists of the articles found using search strings and articles identified

through a manual search using Google Scholar to answer RQ5. Both backward

snowballing from the lists of references and forward snowballing by finding citations to

the papers were included in this research. We analyzed each publication and extracted

limitations, whether for specific approaches or in general (i.e. limitations of building

security from the beginning of software development). Table 17 shows the all the

limitations and challenges for existing software security approaches whether for specific

approach or in general (i.e. what make building security is harder from the early stage of

SDLC). The total primary studies 165 were selected using both SLR and snowballing,

these studies were analyzed for achieving our second objectives to identify existing

software security approaches limitations in SDLC. Table 17 Shows the limitations and

challenges of existing software security approaches in SDLC. Also , table 18 shows the

limitations categorizations based on the approaches types.

www.manaraa.com

79

Table 17 Limitations and Challenges

Limitations and challenges Approach References

1 Lack of analyzing of security threats and derive of

security requirement using the problem frame

(Requirement elicitation approaches).

Abuse Frame

[68]

2 Inadequate of security requirement (definition). SREF [69] [70]

3 Lack of awareness of security concerns within

development team.

Apvrille and

Pourzandi

[54]

4 Disconnected between security and software

development.

Van Wyk and

McGraw

[71]

5 Lack of security activities within normal SDLC. Microdoft SDL [50] [72]

6

Lack of security activities within normal SDLC.

Software

Security

Assessment

Instrument

(SSAI)

[73]

7 Lack of security engineering expertise between

engineer and developer to check the level of security.
S2D-ProM

[74]

8 Use case is poor at supporting security

requirements.

 Limited support of security threats and

requirement using use case.

Misuse cases

[51] [75]

9 Lack of expertise to derive security requirements

between development team.
Abuse case

[59]

10 Lack of specifying intrusion detection in UML

notations.
UMLintr

[76]

11 Lack of specifying attack scenarios specification in

modeling language.
AsmLSec

[77]

12 Unsupported of specifying access control security

property in designing web applications.
ADM-RBAC

[78]

13 Lack of supporting security concerns in SDLC

(authorization access control).
AMF

[79]

www.manaraa.com

80

14 The need of Integrating security concerns in design

level.
Georg-AO

[80]

15 Absence of separating between security concerns and

business requirement.
Gomaa-UML

[81]

16 Lack of presenting and analyzing security policies

with in the participant of SOA.
SecureSOA

[82] [83]

17 Lack of security information and modeling security

properties in UML diagrams.
UMLsec

[84] [85]

[53] [57]

[55] [86]
18 Lack of modeling and verifying of secure software

and threat behavior.
Xu-Petri

[87]

19 Lack of presenting and analyzing of security

properties using UML.
YU-AC

[88]

20 Lack of considering and specifying security in

KAOS (goal oriented approach that used in the

requirement phases).

KAOS

[52]

21 Lack of security concerns specification in Agile

development.
 HTTPUnit

[89]

22

 Limited to some security vulnerabilities such as

Buffer overflow, cross site scripting and SQL

injection, while other vulnerabilities such as cross

site request forgery and format string bug does

not addressed by this approaches.

Dynamic

analysis

[90] [91]

[92] [93]

[94] [95]

[96] [97]

[98] [99]

[100] [101]

[102] [103]

[104] [105]

[106]
23 Suffer from false positives and false negatives.

 Only support high level language such as PHP ,

Java and C.

 Limited to some type of vulnerabilities such as

Buffer overflow, format string bug and SQL

injection, while other vulnerabilities such as cross

Static analysis

[107] [108]

[109] [110]

[111] [112]

[113] [114]

[115] [116]

[117] [118]

[119]

www.manaraa.com

81

site scripting and cross site request forgery do not

supported.

24 None of this approaches addressed cross site

request forgery (CSRF).

 Limited to analyze code written using scripting

language such as PHP and JSP, and in procedural

language (C).

 Limited to address few types of vulnerabilities

such as SQLI and XSS.

Hybrid analysis

[120] [121]

[122] [123]

[124] [125]

25 Limited to few types of vulnerabilities such as

buffer overflow, SQL injection and cross site

scripting.

 Only two programming language supported by

this approach (C and JAVA).

Secure

programming

[126] [127]

[128] [129]

[130]

26 Limited to some types of vulnerabilities

(BOF and XSS).

 Deal with source code written using C and

Java Script.

Program

transformation

[131] [132]

[133] [134]

27 Limited to some vulnerabilities such as BOF,

SQL and XSS.

 Limited to code written using C programming

language.

Patching

[135] [136]

[137] [138]

28 Lack of standard-based (CC) process that deal of

security at the early stages of software development.
SREP

[139] [140]

[141]

29 Security does not supported by Tropo a normal

requirement elicitation approach.
SecureTropo

[142] [143]

30 Lack of presenting and analyzing of security property

in UML class diagram.
FDAF

[144] [145]

31 Lack of modeling access control security policy in Giordano-Access

Control
[146]

www.manaraa.com

82

the early stage of SDLC.

32 Need for presenting and analyzing role based access

control security policy in the design phase.

Kim-Access

Control

[147]

33 Neglecting visualizing the access control security

policy in the design phase of SDLC.
Mariscal-AC

[148]

34 The need of eliciting and development security

concerns in the whole data warehouse development

lifecycles.

Medina-DB

[149] [150]

[151]

35 Lack of incorporating security aspect related to

database access authorization with development

process.

PbSD

[152] [153]

36 Neglecting of security (confidentiality security

policy) during the development XML data

warehouse.

Vela-DB-XML

[154]

37 The need of modeling designs along with

their security policy.

 The need of making transition from designs

and policies to secure systems.

 Neglecting of engineering security in overall

development software system.

SecureUML

[56] [155]

[156]

38 The need of presenting and modeling intrusion

detection in the early stage using software

specifications language.

UML state charts

[157]

39 The need of guidance as a security requirement

development process.
SRS-Tool

[158]

40 Lack of consistent framework and methodologies for

modeling security concerns within SOA participants.
SECTET

[159] [160]

41 Neglecting of security design principle (Least

Privilege) by software architects.
Buyens-LP

[161]

42 Demands for a through integration of security Hoisl-SOA [162]

www.manaraa.com

83

features (confidentiality and integrity) in the

development process of service-oriented systems.

43 The need of specifying the security policies (access

control) in the normal software engineering models.
UML- AC

[163]

44 Neglecting confidentiality issue during

SDLC.

 The need of UML notations that support this

issue.

UMLS

[164]

45
Lack of security practice in Agile development.

Agile Security

Framework(ASF

)

[165]

46 Lack of knowledge and skills needed of secure

software system.
ISDF

[166]

47 Lack of security knowledge and skill to

analyzing and eliciting security requirement

among software engineer.

 Neglecting security requirement in the early

stages.

EUC

[167]

48 Lack of modeling the secure social-technical system. STS-Tool [168]

49 Absence of presenting security concerns in

software architectural level.

 Lack of supporting secure design decision.

Gupta-

Framework

[169]

50 Lack of systematic security requirement engineering

in the early stage of software development.
SQUARE

[170] [171]

51 Lack of systematic security requirement engineering

in the early stage of software development.
CLASP

[172] [173]

52 The need of approach that make a Trade-off between

secure and usable system.
AEGIS

[174]

53 Lack of writing security requirement (Intrusion

detections) using normal software specification

language.

AsmL

[175]

www.manaraa.com

84

54 Absence of integrating security concerns in Agile

development.
FDD

[176]

55 Knowledge of stakeholders, programmers and

testers.

 Disregard of security which results from deficient

knowledge of stakeholders.

General

[178][179][167

][180][181][18

2] [183][184]

[185][186]

56 Need for proofing- lack of empirical studies.

General

[187][188][189

][190][191][19

2][193][184][1

94]
57 The need of Security Experts Involvement.

General

[195][196][197

][198][199][16

7] [200][190]

58 Limited to some security concerns.
UMLintro,

SecureUML

[167][201][61]

[184][202][203

]

59 Suffer from false positive and false negative.

Static analysis

[204][205][194

][206][207][20

8][209]

60 The need of supporting Secure - A Social-Technical. SecureTropos [210] [211]

[212][213][214

]

61 Scalability.

 (This limitation specific to the UML-based

approaches, the nature of their analysis lead to

limitations in the complexity of the interactions they

can support making them unfit for modeling large

systems.)

UML-based

approaches

(Misuse case,

UMLsec and

SecureUML).

[215][216][217

][214]

62 Neglecting inside threats.

The notion of misuse cases cannot explain why a

misuser attacks the system, and the impact of a

security use case and a misuse case on other use

cases

Misuse cases [218][184][219

]

63 Does not cover all the coding vulnerabilities. Static analysis,

dynamic

analysis, secure

programming,

patching.

[205][185]

[209]

www.manaraa.com

85

64 Limited to a few Programming language. Vulnerabilities-

mitigation

approaches

[205][220]

[209]

65 Organizational Impact and business processes.

This limitation is caused by too much organizational

focus on time-to-market and the usability of the

system. Also, software development teams are

constantly under severe pressure and deadlines to

meet delivery dates and customer commitments.

General [195][221]

66 No more comprehensive approach that cover all

stages.

General [201][202]

67 Learnability and understandability.

The technique is learnable in a definite and

acceptable time period. Also, there should be clear

steps and activities for the technique.

Misuse case [217][216]

[219]

68 Traceability.

Traceability means being able to keep track of the

history of how models are generated throughout the

software lifecycle, and how they relate to each other.

It helps to trace design flaws back to a model when a

counterexample is detected during the verification of

less abstract model, or errors are found during the

testing of the produced system’s infrastructure

SecureUML ,

UMLsec ,

SECTET

[222]

69 Used in the industry.

 : It has been reported that a small number of

approaches (processes oriented) have been used in the

industry, such as Microsoft SDL and CLASP.

General [8]

www.manaraa.com

86

70 Others UML-based

approaches

[214] [184]

www.manaraa.com

87

Table 18 limitations and challenges categorization

Group Approach Limitations and challenges

Reverse approach

(Consider security

requirements in a reverse

way, e.g. identifying

problems or attacks that

may subvert the security

of software systems).

Abuse frame Lack of analyzing of security threats and derive of

security requirement using the problem frame

(Requirement elicitation approaches).

Misuse cases Use case is poor at supporting security

requirements.

 Limited support of security threats and

requirement using use case.

 Neglecting inside threats.

 Learnability and understandability.

 The lack of a precise set of guidelines for their

definition, which renders them unsuitable for

certain kinds of threats, especially when a large

number of critical assets are involved.

 This method also fails to provide guidance on

when and how identified security issues can be

tackled and how the produced security

requirements can be linked to the rest of the

development process.

Abuse case Lack of expertise to derive security requirements

between development team.

Essential Use

case

 Lack of security knowledge and skill to

analyzing and eliciting security requirement

among software engineer.

 Neglecting security requirement in the early

stages.

Process Oriented

(Proper steps, procedures

activities to guide the

participants.)

SREF Inadequate of security requirement (definition).

Apvrille and

Pourzandi

Lack of awareness of security concerns within

development team.

Van Wyk and

McGraw

Disconnected between security and software

development.

www.manaraa.com

88

Microdoft SDL Lack of security activities within normal SDLC.

 Software

Security

Assessment

Instrument

(SSAI)

Lack of security activities within normal SDLC.

S2D-ProM

Lack of security engineering expertise between

engineer and developer to check the level of security.

SREP

Lack of standard-based (CC) process that deal of

security at the early stages of software development.

ISDF

Lack of knowledge and skills needed of secure

software system.

SQUARE

Lack of systematic security requirement engineering

in the early stage of software development.

CLASP

Lack of systematic security requirement engineering

in the early stage of software development.

AEGIS

 The need of approach that make a Trade-off

between secure and usable system.

 Limited to some security concerns.

UML-based approaches

(Approaches that make

use the Unified Modeling

Language notations)

)This group of approaches

cannot serve projects of

different sizes(scalability

limitations)

UMLintr Lack of specifying intrusion detection in UML

notations.

Georg-AO The need of Integrating security concerns in design

level.

Gomaa-UML Absence of separating between security concerns and

business requirement.

YU-AC Lack of presenting and analyzing of security

properties using UML.

FDAF Lack of presenting and analyzing of security property

in UML class diagram.

Kim-Access

Control

Need for presenting and analyzing role based access

control security policy in the design phase.

www.manaraa.com

89

Mariscal-AC Neglecting visualizing the access control security

policy in the design phase of SDLC.

Medina-DB The need of eliciting and development security

concerns in the whole data warehouse development

lifecycles.

PbSD Lack of incorporating security aspect related to

database access authorization with development

process.

UMLsec Lack of security information and modeling

security properties in UML diagrams.

 The resulting models do not express attackers’

behavior, and the threat description is limited,

using the notion of Delete, Read and Insert

stereotypes to change a state of the subsystem.

SecureUML The need of modeling designs along with their

security policy.

 The need of making transition from designs and

policies to secure systems.

 Neglecting of engineering security in overall

development software system.

 Limited to some security concerns.

UML state charts The need of presenting and modeling intrusion

detection in the early stage using software

specifications language.

Hoisl-SOA Demands for a through integration of security

features (confidentiality and integrity) in the

development process of service-oriented systems.

UML- AC The need of specifying the security policies (access

control) in the normal software engineering models.

UMLS Neglecting confidentiality issue during SDLC.

 The need of UML notations that support this

issue.

www.manaraa.com

90

Notations

(Specify and present

security specification

(security properties,

attack specification,

security requirement)

using new proposed

notations.)

ADM-RBAC Unsupported of specifying access control security

property in designing web applications.

AMF Lack of supporting security concerns in SDLC

(authorization access control).

Xu-Petri Lack of modeling and verifying of secure software

and threat behavior.

Giordano-Access

Control

Lack of modeling access control security policy in

the early stage of SDLC.

Buyens-LP Neglecting of security design principle (Least

Privilege) by software architects.

SECTET Lack of consistent framework and methodologies for

modeling security concerns within SOA participants.

AsmLSec Lack of specifying attack scenarios specification in

modeling language.

AsmL Lack of writing security requirement (Intrusion

detections) using normal software specification

language.

SecureSOA Lack of presenting and analyzing security policies

with in the participant of SOA.

Vulnerabilities-

Mitigation approaches

 (Dealing with common

security vulnerabilities in

the coding phase such as

BOF, XSS, SQLI ...)

(Limited to a few

Programming language.)

Static analysis Suffer from false positives and false negatives.

 Only support high level language such as PHP,

Java and C.

 Limited to some type of vulnerabilities such as

Buffer overflow, format string bug and SQL

injection, while other vulnerabilities such as cross

site scripting and cross site request forgery do not

supported.

Dynamic

analysis

Limited to some security vulnerabilities such as

Buffer overflow, cross site scripting and SQL

injection, while other vulnerabilities such as cross

site request forgery and format string bug does not

addressed by this approaches.

www.manaraa.com

91

Hybrid analysis None of this approaches addressed cross site

request forgery (CSRF).

 Limited to analyze code written using scripting

language such as PHP and JSP, and in procedural

language (C).

 Limited to address few types of vulnerabilities

such as SQLI and XSS.

Secure

programming

 Limited to few types of vulnerabilities such as

buffer overflow, SQL injection and cross site

scripting.

 Only two programming language supported by

this approach (C and JAVA).

Program

transformation

 Limited to some types of vulnerabilities (BOF

and XSS).

 Deal with source code written using C and Java

Script.

Patching Limited to some vulnerabilities such as BOF,

SQL and XSS.

 Limited to code written using C programming

language.

Goal-oriented

Approaches

Extended for goal

oriented modeling

approaches that focuses

on describing both

organizational

environment of a system

and a system itself. Also, it

extended for specifying

the anti-goal and

constrains of the systems.

KAOS Lack of considering and specifying security in

KAOS (goal oriented approach that used in the

requirement phases).

SecureTropo Security does not supported by Tropo a normal

requirement elicitation approach.

 The need of supporting Secure - A Social-

Technical.

www.manaraa.com

92

Others

(specific to certain

technology , development

methodology or general

limitations)

HTTPUnit Lack of security concerns specification in Agile

development.

Vela-DB-XML Neglecting of security (confidentiality security

policy) during the development XML data

warehouse.

SRS-Tool The need of guidance as a security requirement

development process.

Agile Security

Framework(ASF)

Lack of security practice in Agile development.

STS-Tool Lack of modeling the secure social-technical system.

Gupta-

Framework

 Absence of presenting security concerns in

software architectural level.

 Lack of supporting secure design decision.

FDD Absence of integrating security concerns in Agile

development.

General (general

limitation for

incorporating

security in

SDLC)

 Knowledge of stakeholders, programmers and

testers.

 Disregard of security which results from deficient

knowledge of stakeholders.

General Need for proofing- lack of empirical studies.

General The need of Security Experts Involvement.

General Organizational Impact and business processes.

General No more comprehensive approach that cover all

stages.

General Used in the industry- only CLASP and SDL.

www.manaraa.com

93

6 CHAPTER 6

CONCLUSION

Traditionally, software security is only considered in the later stages of software

development with the incorporation of security concerns as an afterthought. As a

consequence, the risk of introducing new security vulnerabilities into various stages of

software development lifecycles increases. Research evidence has proven that approaches

to address security-related concerns are insufficient and could likely cause costly reworks

in addition to all the intangible consequences caused by a security breach. To avoid these

costly mistakes, security concerns need to be addressed from the beginning of software

development lifecycles all the way through to deployment and maintenance. Several

approaches have been proposed in the literature for incorporating security into the SDLC

from the requirements gathering phase until the maintenance and deployment, along with

recommended tools to support a security-centric software development lifecycle. Despite

the importance of these approaches, only a small amount of research has been carried out

to investigate the approaches and their limitations in a systematic manner.

With this focus, we were interested in exploring software security approaches and

their limitations in the software development lifecycle. This research aimed at exploring

software security approaches and their limitations in software development lifecycle by

tackling five research questions. The main results are as follows:

RQ1: 118 articles were selected using SLR that met our inclusion criteria and quality

assessments. We analyzed each publication and extracted about 54 relevant approaches

www.manaraa.com

94

for incorporating security into different phases of SDLC. Based on our study, dynamic

analysis and static analysis approaches were cited the most with 14.41 % and 11.02 %

respectively. These approaches have been categorized (for better understanding) mainly

into seven main categories (Reverse approach, Process Oriented, UML-based approaches,

Notations, Vulnerabilities-Mitigation approaches, Goal-oriented Approaches and Others).

(More information see section 5.1 – 5.1.1)

RQ2: Based on our research, the phase in the software development lifecycle where a

security approach is emphasized varies in different studies. The result shows that a

significant number of studies in this review considered security checks around the coding

phase of development. However, applying security checks across the entire lifecycle has

received less attention. (More information see section 5.1.2)

RQ3: The third research aspect focused on the most active researchers who contributed

to the research topic. To get an overview of active researchers in this area, we followed a

common metric in software engineering [177]. This metric works by counting the number

of papers published by each author. (More information see section 5.1.3)

RQ4: With respect to the publication venue and study type were the selected studies

published, the selected studies were published in six publication types: conferences,

journals, symposiums, book chapters, lecture notes in computer science, and workshops.

Also, Overall, 82 publication venues were identified that cover different areas of

computer science, such as software engineering, security, networking, etc. (More

information see section 5.1.4)

www.manaraa.com

95

RQ5: The total primary studies 165 were selected using both SLR and snowballing, these

studies were analyzed for achieving our second objectives to identify existing software

security approaches in SDLC. We analyzed these studies and retrieved various

limitations and challenges whether for identified existing software security approaches or

general challenges and limitations. (More information see section 5.2).

Two research methodologies are used in this thesis: SLR and Snowballing. SLR is

intended to provide a comprehensive scanning of all the articles targeting the software

security approaches in software development lifecycles. Its main purpose is to explore

software security approaches proposed in the literature and to examine which stages the

identified approaches emphasized. Fifty-four security approaches are identified for

providing security checks in various phases of software development, and significant

analysis has been conducted, including demographic analysis to reveal any hidden

patterns. Furthermore, the publication venues and active researchers who contributed to

the topic are identified. Snowballing was used as another method in this research to

identify possible limitations for incorporating security into software development

lifecycles. Various limitations have been identified, including knowledge of the software

development teams and the need for security experts to be involved in most of the

security approaches, especially in the requirements phase. Also, the limitations for each

software security approaches have been identified as described in the literature.

www.manaraa.com

96

6.1 Contribution

Few research articles discuss the software security approaches in software

development lifecycles. The articles that exists were produced in the last few years, and

some carried out reviews and comparison studies on the issue. Most of these reviews

focused only on secure software development at the requirements engineering phase of

the SDLC, and others concentrated only on investigating security practices for special

software development methodologies, such as agile or XP. However, based on our

research, none of them performed a review focused on software security approaches that

cover all stages of software development lifecycles in a systematic manner using

systematic literature review, and none of those reviews documented the systematic

processes for selecting the primary studies. Also, none of the existing articles explore the

limitations of incorporating security into software development lifecycles. Our work is of

high value and can serve as a reference for understanding the various software security

approaches into software development lifecycles and their limitations. Our research can

be considered a first stone that assists software development organizations in better

understanding the existing software security approaches used in the software

development lifecycle and their limitations. It can also provide other researchers with a

firm basis on which to develop new software security approaches.

6.2 Validity

The results of this research are based on systematic literature review and

snowballing. Despite our extreme care to provide accurate and valid data, a few points

must be considered when adopting our results. We tried to design our search string to

www.manaraa.com

97

cover all the software development lifecycles from the requirement phase through to

deployment and maintenance, but a threat to validity stems from the fact we do not

include all articles that proposed software security approaches which may affect the

completeness of the study search. To mitigate this threat, we used snowballing as another

research methods to identify the limitations of exiting software security approaches in

software development lifecycles.

6.3 Lesson Learned

This thesis is the result of a full year and a half of work and effort. The experience

is indispensable, and the obtained knowledge is of great value. Conducting a systematic

literature review is a very demanding task. It requires reading an enormous number of

papers quickly and then determining the right ones to evaluate based on quality criteria. I

have learned how to use the advanced settings on various academic database search

engines. I have also learned how to use synonyms of terms to retrieve additional relevant

materials. Synthesizing the results and correlating the information with study types,

publication venues, and active researchers strengthen my skills as a researcher. I am able

to see issues from various perspectives and connect them in order to detect any hidden

patterns. Additionally, I have learned how to use snowballing as a second method in my

research to identify more results related to specific research questions.

6.4 Future Work

Our work stems from the fact that there are few articles and reviews that explore the

software security approaches in a systematic manner, and none of them address the

limitations of incorporating security into software development lifecycles. As a part of

www.manaraa.com

98

future work, secure software development is an ongoing research area, and we can

enhance any of software security approaches that have been identified in this research, or

we can address one of the identified limitations for incorporating the security into

software development lifecycles. Also, Empirical research in the real industrial

environment to explore the limitations of software security approaches in SDLC will be

conducted.

www.manaraa.com

99

APPENDIX

Software Security Approaches Details

 Approach Description

1 Dynamic

Analysis

(Testing

Security

Vulnerabilities

)

Dynamic analysis is one of the most proactive approaches used for

mitigating code security vulnerabilities, such as buffer overflow and

SQL injection attacks, before the software release. The tested program

implementation is checked with specific input during its execution and

then both of the computed and expected outputs are compared. Then

the mismatches between the inputs and expected outputs are checked.

If there are mismatches between them, the implementation does not

satisfy the desired security objectives (i.e. requirements) of the

particular input.

Three major processes need to be performed in this approach:

1. Identify the requirements and coverage: Based on the functional

requirements, it is necessary to identify the security requirements. In

this case, this is the security vulnerabilities generated by the software

implementations, invalidated inputs, et cetera. The security breaches,

such as buffer overflows and SQL injection attacks, are defined in

advance.

www.manaraa.com

100

2. Generate test case: In this step, the program artifacts such as source

code and executable code are used for generating test case. Then the

presence or absence of an attack is determined by the state of the

program. Various test case generations have been used, including fault

injection and mutant analysis.

3. Test case execution: In this step, the generated test case is run

against the implementation to determine the presence or absence of the

security vulnerabilities defined based on the attack symptoms.

Various test case generations are used by these approaches, including

fault injection and mutant analysis. In fault injection, the input data and

variable are corrupted, and the program executes with the corrupt data.

Based on that, the expected responses confirm the presence or absence

of the vulnerabilities. Also, in fault injection, the user can modify the

state of the program (i.e. variables or sensitive locations in the code,

such as functions that control other locations) to check whether the

program can handle the vulnerabilities. For example, the user can

change the structure of the HTML file by replacing one tag with

another and check for the presence or absence of the vulnerabilities.

Similarly, mutant analysis test generation is a modified implementation

of the fault injection type. This mutant describes a rule for injection a

fault.

www.manaraa.com

101

2 Static Analysis Static analysis is one of the most proactive approaches used for

detecting security vulnerabilities, such as buffer overflow, cross-site

scripting, and SQL injection attacks, in the program code before the

software release. Static analysis was developed for compiler

optimization issues and then used for detecting security vulnerabilities

due to widespread security issues. Static analysis works by scanning

one or more source files and creating a representation of the scanned

source to analyze it. The input program code is examined, specific

rules, called inferences, are applied to that code, and then a list of

vulnerabilities that exist in the code is derived.

Inference is the core part of this approach, in which the code is

scanned. Various types of inference rules of static analysis have been

proposed, including tainted data flow and annotation inference. In

tainted data flow inference, the approach marks the input variable as

tainted, and then their propagations are tracked. Based on that, warring

is generated if the tainted input participates in sensitive operations.

Furthermore, in annotation-based inferences, the approach annotates

the code with interested properties in term of post-condition and pre-

condition and then checks whether the input can be used safely, based

on the annotation previously created.

All these tools follow the same pattern when applied to a piece of

www.manaraa.com

102

source code:

1. Transforming the code to be analyzed into a program model, which

is a set of data structures that represent the code.

2. Analyzing the model using different rules and/or properties.

3. Showing the results to the analyzer.

3 UMLsec The UMLsec approach is an extension of unified modeling language

used for securing the development system. It specifies security

requirements using stereotypes, tags, and constraints. UMLsec uses

stereotypes as a label in the UML diagram for presenting constraints

that need to be achieve by the model and tags for specifying simple

properties of model elements.

Twenty-one stereotypes have been defined for presenting security

requirements. These stereotypes can be associated with various

diagrams to represent security requirements and design specifications

in the UML model, such as deploy diagram , use case diagram,

sequence diagram, class diagram, activity diagram, and state chart

diagram.

4 Hybrid

Analysis

Due to the pros and cons of static analysis and dynamic analysis, a

huge number of test cases in both dynamic and static analysis produce

false positive and negative results. Hybrid analysis is a combination of

the two complementary approaches. To minimize the disadvantages of

www.manaraa.com

103

static and dynamic analysis, this hybrid type only examines the

suspected vulnerable code by identifying the location of the program

code that needs to be analyzed and check it against actual exploitations

of vulnerabilities. Using dynamic analysis, the actual exploitation of

vulnerable code is verified with input test cases.

5 Secure

Programming

Lack of understanding of the programming language, such as data

types or libraries, and programmers neglecting possible vulnerabilities

are considered dire practices that contribute to the writing of vulnerable

code. The secure programming approach supports writing

vulnerability-free code in such forms as APIs, language, safe libraries,

and filters.

6 Program

Transformation

The program transformation approach is one of the most popular

techniques used in transforming vulnerable source code into

vulnerability-free source code. This approach is categorized into

source-to-source translation and code rewriting. In source-to-source

translation, the enhanced source code is generated automatically from

the vulnerable source code in the same language. In the case of code

rewriting, the output of the code is rewritten in another processor. For

example, the user could rewrite the vulnerable JavaScript code to stop

cross-site scripting (XSS) attacks.

www.manaraa.com

104

7 Patching In the patching approach, the processes take place after the attack

occurs. Also, in this approach, the vulnerable code is identified, and the

program is modified to remove the vulnerabilities. Two types of

patching have been proposed, source code patching and environment

patching. In source code patching, the source code is analyzed to

identify the vulnerable statements that need to be fixed. This approach

helps in rewriting the SQL statements in such a way the query structure

does not change due to malicious code. Also, this approach helps avoid

the BOF by replacing the unsafe library with a safe equivalent.

In environment patching, the process is completed without stopping the

execution. For example, a BOF attack can be avoided by redirecting

vulnerable functions such as strcpy with equivalent invulnerable

functions such as strncpy.

8 SREP

(Security

Requirement

Engineering

Process)

SREP is a standard-based process that supports security requirements

during the early stages of software development lifecycles in a

systematic manner. This approach is based on Common Criteria as an

international standard to achieve comparability between the results of

independent security evaluations of IT products. Also, developing the

security requirement based on identified a group of activities and roles.

These activities define the security, assets, and threats and elicit the

security requirements. Additionally, it uses other approaches, such as

UMLsec, as assistants to do the proposed activities. Also, this process

www.manaraa.com

105

uses UML cases for modeling security objectives, misuse cases for

eliciting threats, and groups of templates for ranking threats, attacks,

and risk.

Nine activities are involved in this process:

1. Agree on definitions

2. Identify vulnerable and/or critical assets

3. Identify security objectives and dependencies

4. Identify threats and develop artifacts

5. Risk assessment

6. Elicit security requirements

7. Categorize and prioritize requirements

8. Requirements inspection

9. Repository improvement

9 Medina-DB

Secure engineering processes for data warehouses are proposed. The

Medina-DB approach models access controls and logging policies for

databases in UML class diagrams. Tagged values specify the security

level and roles related to classes. OCL constraints express more

complex rules. Based on such, UML diagram platform-specific

implementations for different databases can be generated. In this

www.manaraa.com

106

approach, the transformation between CIM, PIM, and PSM is

guaranteed.

10 SecureUML The SecureUML approach is an extension of UML that specifies

RBAC policies, which are considered security requirements. Also, in

this approach, the class diagram is annotated with related access

control information with defined vocabulary. Furthermore, OCL is

used for specifying the constraints for permissions, resources, and

actions. Moreover, in this approach, code and PSM can be generated

automatically.

11 SREF

(Security

Requirement

Engineering

Framework)

The SREF approach is an iterative process that consists of four

processes for integrating security requirements with requirement

engineering. The five processes are as follows:

1. Capture the functional requirements

2. Find the security goals

3. Identify the assets which are anything that has a value in the

organizations

4. Identify security requirements

5. Build satisfaction arguments to help verify the satisfaction of the

security requirement

12 Microsoft-SDL The Microsoft-SDL approach is a process proposed by Microsoft for

www.manaraa.com

107

 incorporating security into SDLC with various security activities

during software development. In the requirement specification phase,

this approach suggests that the security needs and features are

identified using user demand. Also, various activities have been

suggested by this process in the design phase, including identifying the

components that are critical to security, caring about the application of

least privilege principles, minimizing the attack surfaces, identifying

entry and access points, modeling the threats and risk analysis on

components, mitigating threats by identifying the security

requirements, and other activities for secure design.

Moreover, various secure coding standards have been recommended by

this process in the implementation phase and confirmed by using static

analysis and reviewing the code at the end of the phase. Finally, code

reviews and security testing should be performed on the complete

software to verify it for the final step.

13 Misuse Cases

The misuse case approach is an extension of the use case approach to

present the unwanted behavior developed in the system. Misuse cases

are initiated by misusers, and use cases are intimated by normal users

to achieve functionality. Use cases are used to present the

requirements, but misuse cases present the security threats.

14 SecureSOA SecureSOA is a security design language used to define the security

requirements of service-oriented architectures, which are behaviors of

www.manaraa.com

108

the interaction between the participants in the SOA. The concrete

syntax of the SecureSOA security design language is stereotype UML

class.

15 Secure Tropos The Secure Tropos approach is an extension of a development

methodology called Tropos. In this approach, various notions have

been used for actor, goal, soft goal, task, resource, security constraint,

secure task, and secure resource. An actor can achieve the objective to

accomplish a goal and depend on another actor. This is called the

dependee and dependent relationship.

Security requirements and design specifications can be represented

using secure Tropos notation as an interaction between different actors

to accomplish certain goals. Also, this approach uses the I* notation

language to specify the dependences between different actors.

16 FDAF (Formal

Design and

Analysis

Framework)

FDAF uses aspects such as access control to add security properties to

UML class diagrams. The available aspects can be stored in an aspect

library and woven into the design at hand when needed. Furthermore,

FDAF aims to allow the translation of extended UML models to formal

languages to facilitate formal analysis. Note that FDAF is not limited to

security and also considers performance. Building a role-based access

control to the software architecture of an online banking system is a

way to illustrate this approach. This approach is used to integrate

www.manaraa.com

109

access control to the architecture design.

17 PbSD (Pattern-

based Method

for Secure

Development)

The PbSD utilizes the security pattern to enforce the security in the

system design. PbSD models templates of common security patterns

such as RBAC using UML augmented with template OCL constraints.

It helps the designer, particularly the database designer, create a

database that complies with the organizational policies relating to the

authorizations in the early stages of software development. These

patterns are initiated into application models, such as UML class

diagrams. The approach has been validated in a controlled experiment

with students as participants. In the experiment, PbSD is compared

with plain SQL and Oracle's VPD with respect to modeling access

control policies.

18 SECTET The SECTET approach models security requirements for service-

oriented architectures in UML activity and class diagrams. Both

diagrams are extended with several stereotypes. Furthermore, more

complex rules are specified with SECTET-PL, an OCL-like policy

language. It also automatically generates code for a variety of target

platform technologies.

19 SQUARE

(Security

Quality

Requirements

Engineering)

SQUARE is a comprehensive methodology for integrating security

from the early stages of the software development process. It consists

of nine steps:

www.manaraa.com

110

1. Agree on definitions

2. Identify security goals

3. Develop supporting artifacts

4. Perform risk assessment

5. Select elicitation techniques

6. Elicit security requirements

7. Categorize requirements

8. Prioritize requirements

9. Inspect requirements

20 CLASP The CLASP approach is a group of secure software developments that

perform based on the roles during development. It suggests that

security experts should be involved from the beginning of

development. According to this approach, it has been suggested to use

risk analysis and threat modeling during the requirement specification

and design phases. Also, security information has been annotated with

class diagrams. Security code reviews and static analysis are

recommended in the security assurance phase. Furthermore, a list of

common vulnerabilities and how to mitigate them is provided during

the development.

www.manaraa.com

111

Three activities have been proposed by this process to achieve security

requirements:

1. Identify the resources, assets, and roles with the owners and asset

users

2. Categorize the resources and assets in classes based on security

requirements

3. Identify possible interactions between the resources and assets

Various security services are identified based on the interaction

between the assets and resources, including accountability,

authorization, availability, authentication, confidentiality, and integrity.

21 Abuse Frame Abuse frame is based on problem frame to define anti-requirements

(i.e. requirements for malicious users) and abuse frame to analyze

security threats. Problem frame helps analyze problems to be solved

where interaction between the software and domains in the system

context is described. Problem frames are useful in requirement

engineering because they help with decomposing the system context

into simpler sub-problems mapped to well-known problem classes.

This approach is an extension of problem frame, so it utilizes the

problem to define the system context. The abuse frame is used for

identifying the malicious users within the system context by finding the

problem and the sub-problems by utilizing the problem frame. The

www.manaraa.com

112

security need is described as constraints on the identified

functionalities. The abuse frame diagram is constructed for identifying

the threats, and the security need is negated to identify the anti-

requirement and present them in the abuse frame diagram.

Security vulnerabilities, such as ''Limit the number of tries for entering

passwords,'' are identified, and the security requirements are addressed.

22 Apvrille and

Pourzandi

This approach is a process proposed by Aprville and Pourzandi for

secure software development lifecycles based on their experiences. In

the requirement phase, the approach used to identify the high level

security objectives such as confidentiality and availability, for software

system to be. Also, for the low level, this process uses threat modeling

for building the security requirements. The prioritization of these

security requirements is based on the results of the risk analysis. For

the other phases, this process suggests using UMLsec for presenting

the design decision. Also, for the implementation phase, this process

advises using a suitable programming language that achieves the

security purposes and some security practices for mitigating security

vulnerabilities, such as FSB and BOF. Finally, for the assurance phase,

various tools have been suggested for use in this phase, including code

reviews and static analysis scanner tools.

23 Van Wyk and

McGraw

The Van Wyk and McGraw approach suggests security practices that

could be applied through the software development lifecycles based on

www.manaraa.com

113

 the long successful experience of the industry. This approach has been

used in organizations with successful results. One of the methods used

in the requirement phase is an abuse case. The authors have a lot of

experience in this field, and they work as consultants in one of the

leading companies in software security.

24 SSAI The SSAI approach is a group of activities that help in developing

secure software using suitable resources and tools. First, this process

provides an online database that contains information about

vulnerabilities and exploitation and mitigation processes. Another

resource provided by this process is a security checklist that helps with

developing software in a secure manner. Also, the author explains the

details about how to build the checklist and the appropriate items that

can be involved. Moreover, this process categorizes a group of security

static analysis tools. Finally, the testing tools use security property as

the first step to test the software.

25 S2D-ProM

(Secure

Software

Development

Process

Model)

Secure software development activities have been proposed by the

S2D-ProM process. It suggests using risk analysis during various

stages of SDLC, such as requirement specification, design, and

implementation, and the identified risk can be mitigated using security

mechanisms. Based on this process, risk analysis can be done in

various phases of SDLC. For example, the user can use personnel

experience in the requirement phase and design review in the design

www.manaraa.com

114

phase.

Also, this process proposes flexible options when proceeding from one

stage to another. For instance, source code can be developed from

designs based on the secure coding rules or personnel experiences.

26 Abuse Case The abuse case approach uses UML use case diagrams to present

unwanted behaviors in a piece of software. In this approach, the abuse

case model is developed and used to present the harmful interactions

between normal users (actors) and the abuse cases.

27 UMLintr The UMLintr approach is UML extension. Different stereotypes and

tags are used for attacks specification using various diagrams, such as

use case diagrams, state chart diagrams, package diagrams, and class

diagrams. Different types of attacks are presented in this approach,

including remote to user or denial services, and stereotype packages are

used to present each type. For each class, there are three types of

stereotypes and 12 stereotypes for each use case diagram. Stereotypes

also have tags for classes.

28 AsmLSec

(Abstract State

Machine

Language)

AsmLSec is AsmL extension for attack specifications scenarios. It

helps identify how the system under development copes with potential

attacks by using knowledge about past attacks observed on similar

applications. With this approach, the attacks are represented using

transitions, states, and events. There is a source and a destination state

www.manaraa.com

115

for each transition. To fire the transition, to achieve the transition from

one state to the other, a set of conditions need to be met. Moreover, this

approach has the potential of presenting the attack scenarios in AsmL

using appropriate compilers, and these attack scenarios can be

translated as inputs using intrusion detection systems.

29 ADM-RBAC The ADM-RBAC approach is an extension of the Ariadne

Development Method (ADM), which is a development model for Web

systems. ADM divides the development model of Web systems into

three phases: conceptual design, detailed design, and evaluation. ADM-

RBAC extends ADM with several visual models that specify the role-

based access control.

30 AMF

(Assurance

Management

Framework)

The multilayered AMF approach is based on the assurance

management framework that focuses on the development of the

authorization system. AMF facilitates comprehensive realization of

formal security models, security policy specifications, verifications,

security code generation, and conformance testing. This multilayered

approach includes four development phases: authorization security

requirements, authorization model and policy verification,

authorization system design, implementation using UML class diagram

and OCL constraints, and conformance testing.

31 Georg-Aspect

Oriented

The Georg-Aspect Oriented approach is based on aspect orientation for

designing a secure system. It models authentication protocols and

www.manaraa.com

116

possible attacks using UML class and sequence diagrams. By weaving

an attack into system models, which results in a so-called misuse

model, it can be investigated whether the system is vulnerable to

attack. A vulnerable system can be mitigated by weaving an

authentication protocol into its design to create a security-treated

system model.

32 Gomaa-UML

The Gomaa-UML approach describes a way of modeling complex

application designs and requirements in separate ways from modeling

security requirements and designs using UML notation, as in use cases,

class diagrams for static modeling, and collaboration diagrams. It also

separates business concerns from security concerns to reduce the

complexity of the requirements and make it possible to maintain the

system.

33 Xu- Petri Nets The threat-driven Xu- Petri Nets approach models the intended

functionality of a system and possible threats using Petri nets, whereas

mitigations are modeled using Petri net-aspects. Petri nets are a well-

studied formal method with graphical and mathematical notations for

specifications and analysis of distributed systems. Petri nets can serve

as a unified formal basis for specifying system functions, security

threats, and threat mitigations. They are expressive in threat modeling.

34 YU-AC The YU-AC approach uses UML class diagrams augmented with OCL

constraints to model role-based access control policies. Scenarios for

www.manaraa.com

117

verifying modeled policies are generated from operation invocation

patterns. These patterns are manually defined by a designer, and they

constrain the initial state and allow the sequence of operation

invocations. The patterns are manually created using the best available

domain expertise and experience related to the sequences of operations

that are likely to uncover policy violations. Each generated scenario

needs to be labeled either legal or illegal, and the policy must accept or

reject them accordingly. Automatic algorithms for generating scenarios

are proposed.

35 KAOS (Keep

All Object

Satisfied with

Intentional

Anti-Model)

KAOS is a security requirement driven approach for specifying,

analyzing, and modeling application security requirements, and from

these security requirements, security design specifications are derived.

Also, from the design specifications, the secure code is generated using

B method. This approach extends KAOS to include the elaboration of

security requirements using anti-models. An anti-model is constructed

using obstacles, and an obstacle negates existing goals of the system.

36 HTTP Unit HTTP unit is a programmable API to detect SQL injection

vulnerabilities that help the tester emulate the browser in such a way

that the input form could be accessed and modified as a test case. This

test case can be checked for the presence of vulnerabilities. This

approach is especially for Web applications with agile development.

37 Giordano- The Giordano-Access Control approach proposes a set of visual

www.manaraa.com

118

Access Control languages to model role-based access policies. The visual languages

are intended to be usable by a broad range of users, from developers to

top-level managers. Furthermore, XACML policies can be generated

from the visual specifications. XACML is an XML-based language for

creating access policies and automating their use in the management of

access controls for general devices. A group of models for supporting

access control can be used in this approach, including the supported

models Role, Permission, Separation of Duties, and Role Assignment

Diagram. This approach can be embedded into software engineering

methodologies for specifying access control policies to be enforced

during the design level of information systems or applications.

38 Kim-Access

Control

The Kim-Access Control approach combines feature modeling and

UML modeling to incorporate role-based access control policies into

application models. Feature models define RBAC using UML class and

sequence diagrams. These feature models are composited into

application models to define domain-specific RBAC policies. The

author presents two case studies for the sake of illustration, one a

banking system and the other a database management system.

39 Mariscal-AC

The Mariscal-AC approach proposes several extensions of the UML

class diagram to model access control policies. The secure sub-system

diagram models the public interface that is subject to access controls.

The role-slice diagram models the role hierarchy and specifies the

www.manaraa.com

119

allowed and disallowed operations for each role. The user diagram

models the assignment of users to roles, and the delegation diagram

models how users may delegate their roles. Access control policies are

modeled separate from the application design to maintain a clear

separation of concerns. The approach also provides mapping between

the modeled policy and the resulting policy and enforcement codes to

allow tracing and enable code generation. Case studies in the university

system with prototypes are discussed.

40 Vela-DB-XML

The Vela-DB-XML approach extends UML to model access controls

and logging policies for data warehouses. Tagged values in a class

diagram indicate security levels, such as top secret or confidential, and

roles, such as administrative or passenger. More complex rules, such as

log all frustrated access attempts, are modeled as classes. These

platform-independent models are transformed to platform-specific

models, which can be transformed to implementations for specific

databases.

41 UML State

Charts

The UML state charts approach is a combination of abstract state

machine language (ASML) and UML for specific attack scenarios in

the requirement specification phase. These attack specifications

(scenarios) can be transformed to Snort rules and all of these scenarios

are used with some extensions for system intrusion detections.

42 SRS-Tool This approach is a security requirement process for development

www.manaraa.com

120

security requirement specifications with a supported tool called SRS-

Tool. It is based on CC and problem profiles and consists of four steps,

as follows:

Step 1: Analysis of SCL (security classification level) for organization

Step 2: Analysis of security environment

Step 3: Analysis of security requirement

Step 4: Generation of SRS

43 Buyens-LP The Buyens-LP approach allows the analysis of software architecture

for least privilege and separation of duty violations. Based on the

architecture and its documentation, a Task Execution Model (TEM) is

derived. The TEM identifies the relations between principals and the

tasks the system can perform, as represented by the policy defined in

the architecture. The analysis consists of verifying whether the TEM is

consistent with the intended policy as defined by the requirements.

44 Hoisl-SOA Hoisl-SOA is a model-driven approach that extends UML activity

diagrams, SoaML, and UML4SOA to incorporate security into process-

driven, service-oriented architectures (SOA). The UML activity

diagram is extended with SecurePin, SecureDataStoreNode, and

SecureActivityParameterNode elements to represent secure object

flows at the business. Similarly, SoaML and UML4SOA are extended

to represent secure object flows at the service level. These models can

www.manaraa.com

121

be transformed using another step to Web service artifacts, such as

WSDLs. The SoaML provides essential modeling primitives for

structural views of a service architecture, including participants,

collaborations, service contracts, interfaces, and messages. The

UML4SOA extension is used for modeling macroflow/microflow

specifications for the participants of a service architecture.

45 UML-AC The UML-AC approach allows the modeling of access control policies

using UML class and object diagrams. A UML class diagram called a

type diagram specifies the entities available for modeling the policies

and their relations. For example, for a view-based access control

(VBAC) policy, these entities are object, permission, role, subject, and

view. Object diagrams are used to graphically model policy rules and

constraints, and each view must have at least one permission. The

provided formal semantics based on graphs allows users to analyze

modeled policies by verifying whether all reachable states or policy

configurations satisfy all the specified constraints. If this is not the

case, the developer must alter the policy rules accordingly.

46 UMLS The UMLS approach extends several UML elements with labels that

specify access control information, such as ownership and read

permissions for data. The extended UML diagrams can be transformed

to Jif skeleton code. At this level, the Jif compiler can validate the

modeled policy.

www.manaraa.com

122

47 ASF (Agile

Security

Framework)

The ASF approach helps developers by providing step-by-step

guidance for applying security techniques to achieve a secure software

system. Also, it introduces security practices at each phase and

suggests security training for all developers and stakeholders. It

includes hybrid techniques that are a combination of abuser stories and

attack trees.

Different phases have been proposed in this approach, as follows:

1. Security requirement analysis and planning

2. Threat modeling and designing

3. Secure code implementation

4. Secure deployment

48 ISDF

(Integrated

Security

Development

Framework)

The ISDF approach is an integration of carefully selected security

patterns into the appropriate stages of the software development

lifecycle to ensure the security designs are correctly implemented. A

pattern describes a time-tested generic solution to a recurring problem

within a specific context. This framework consist of two components.

The first is secure development best practice, and the second is a four-

stage security pattern. Then the integration between the two

components is done for security purposes.

49 EUC (Essential

Use Cases)

The processes of the EUC approach begin after the requirement

www.manaraa.com

123

engineer gathers the requirements from the stakeholders. The collected

requirements are in the form of textual natural language requirements.

This approach is for supporting and analyzing the capturing process of

security requirements. Also, it supports capturing security requirements

of normal business expressed in natural text. Tool support for the sake

of applying this approach uses three library patterns: security essential

use case, security essential interaction, and security control pattern.

The process starts when the textual requirements are analyzed and

traced to the EUC patterns library for appropriate abstract interaction in

a form of EUC model (1). Then SecEUC are derived from the

generated EUC models based on the categorization of their attributes

related to the security elements, as defined in the SecEUC pattern

library (2). Each SecEUC is mapped to the EUI pattern library (3) for

the generation of an abstract prototype in the form of an EUI model.

Each EUI model is verified with a defined mandatory security control

in the SecCtrl library pattern (4). Next, a recommendation for a

graphical user interface (GUI) is provided to visualize the security

requirements based on the generated SecEUC (5). This helps ensure the

consistency and the correctness of the captured security requirements

with the original business requirements provided by the end-user.

50 STS-Tool The STS-Tool approach is a modelling and analysis support tool for

STS-ml, an actor- and goal-oriented security requirement modeling

www.manaraa.com

124

language for socio-technical systems. Socio-technical systems consist

of social actors, such as humans or organizations, and technical sub-

systems in which they interact to achieve their objectives. STS-ml

includes high-level organizational concepts, such as actor, goal, and

delegation. It is a diagrammatical language that uses graphical concepts

and relations to create the models. It also allows modeling with multi-

view modeling that includes the social view, information view, and

authorization view. The modeling activities consist of five phases:

1. Model of social view

2. Information view

3. Authorization view

4. Automated analysis

5. Deriving the security requirement

51 Gupta-

Framework

Gupta framework is a security engineering process that converts

security requirements and threat into design decisions to mitigate the

identified security threats. In this approach, different security

requirements are mapped to different security services. The identified

design attributes are prioritized, and a security design template is

prepared. Based on the final design decision, the appropriate

cryptography techniques are chosen from a prepared repository.

www.manaraa.com

125

52 AEGIS AEGIS is a secure software development process that concentrates on

security requirement specifications through identifying assets and risk

analysis. Four design sessions have been proposed between the

developers and stakeholders:

1. Software assets and their relationships need to be modeled to

identify the security properties to associate with the assets using abuse

cases

2. Identify software vulnerabilities, threats, and risk

3. Remove identified vulnerabilities using appropriate security

requirements

4. Use other tools, such as static analysis and code review, in the

implementation phase

53 AsmL AsmL is a specification language that is an extension of finite state

machine used for representing security requirements. Also, an attack

with multiple steps can be captured easily using this approach and

presenting them as Snort rules.

54 FDD (Feature

Driven

Development)

The FDD approach is an agile process for secure Web applications. It

integrates agile feature-driven development processes with risk

analysis for building secure Web applications. For risk analysis, this

approach accesses different paths that could lead to possible attacks

and suggests security controls for each possible exploitation of the

www.manaraa.com

126

different vulnerabilities. At each increment, the added assets are

identified, and the potential attacks are specified. Various security

activities are added to the original model to provide security.

List of Publication Venues

Publication Venue Type No. %

ICSE 2007. 29th International Conference on Software

Engineering, 2007.
Conference 6

5.08

ICSE Workshop on Software Engineering for Secure

Systems, 2009. SESS '09.
Conference 5

4.24

Proceedings. Eighth IEEE International Conference on

Engineering of Complex Computer Systems, 2002.
Conference 4

3.39

COMPSAC '08. 32nd Annual IEEE International

Computer Software and Applications, 2008.
Conference 4

3.39

Software & Systems Modeling Journal 4

3.39

The Second International Conference on Availability,

Reliability and Security, 2007. ARES 2007.
Conference 3

2.54

15th International Symposium on Software Reliability

Engineering, 2004. ISSRE 2004.
Symposium 3

2.54

Information and Software Technology Journal 3

2.54

IEEE Transactions on Software Engineering. Journal 2

1.69

Security & Privacy, IEEE Journal 2

1.69

20th Annual Computer Security Applications Conference,

2004.
Conference 2

1.69

2010 IEEE International Conference on Services Computing

(SCC
Conference 2

1.69

ITNG '09. Sixth International Conference on Information

Technology: New Generations, 2009.
Conference 2

1.69

Information Systems Journal 2

1.69

Science of Computer Programming Journal 2

1.69

www.manaraa.com

127

Computers & Security Journal 2

1.69

Model Engineering, Concepts, and Tools 5th International

Conference Dresden, Germany, September 30 – October 4,

2002 Proceedings

Lecture Note

in computer

Science

2

1.69

International Journal of Information Security Journal 2

1.69

Requirements Engineering Journal 2

1.69

Communications in Computer and Information Science Book chapter 2

1.69

Requirements Engineering Conference, 2004. Proceedings.

12th IEEE International
Conference 1

0.85

Proceedings. Twelfth IEEE International Workshops on

Enabling Technologies: Infrastructure for Collaborative

Enterprises, 2003. WET ICE 2003.

Conference 1

0.85

 International Conference on Software Engineering Advances,

2007. ICSEA 2007
Conference 1

0.85

Proceedings. 37th International Conference on Technology of

Object-Oriented Languages and Systems,
Conference 1

0.85

ECBS 2006. 13th Annual IEEE International Symposium and

Workshop on Engineering of Computer Based Systems, 2006.
Symposium 1

0.85

VL/HCC 2008. IEEE Symposium on Visual Languages and

Human-Centric Computing, 2008.
Symposium 1

0.85

IEEE Transactions on Systems, Man, and Cybernetics, Part C:

Applications and Reviews,
Journal 1

0.85

Proceedings Agile Conference, 2005. Conference 1

0.85

ICACIA 2008. International Conference on Apperceiving

Computing and Intelligence Analysis, 2008.
Conference 1

0.85

11th IEEE High Assurance Systems Engineering Symposium,

2008. HASE 2008.
Conference 1

0.85

QSIC '08. The Eighth International Conference on Quality

Software, 2008.
Conference 1

0.85

Proceedings. 2006 31st IEEE Conference on Local Computer

Networks
Conference 1

0.85

ICACT 2008. 10th International Conference on Advanced

Communication Technology, 2008.
Conference 1

0.85

Proceedings First IEEE International Workshop on Source

Code Analysis and Manipulation
Workshop 1

0.85

IEEE Symposium on Security and Privacy, 2006 Symposium 1

0.85

Software, IEEE Journal 1

0.85

2006 Eighth IEEE International Symposium on Web Site Symposium 1

www.manaraa.com

128

Evolution (WSE'06) 0.85

Proceedings. International Conference on Dependable

Systems and Networks, 2002.
Conference 1

0.85

12th Working Conference on Reverse Engineering

(WCRE'05)
Conference 1

0.85

7th IEEE International Conference on Computer and

Information Technology (CIT 2007)
Conference 1

0.85

Third International Symposium on Information Assurance

and Security 2007. IAS 2007
Symposium 1

0.85

2012 International Conference on Cyber Security, Cyber

Warfare and Digital Forensic (CyberSec)
Conference 1

0.85

2012 IEEE Sixth International Conference on Software

Security and Reliability (SERE)
Conference 1

0.85

Computer Standards & Interfaces Journal 1

0.85

Journal of Visual Languages & Computing Journal 1

0.85

Journal of Systems and Software Journal 1

0.85

Decision Support Systems Journal 1

0.85

Computers & Operations Research Journal 1

0.85

Journal of Advanced Research Journal 1

0.85

International Journal on Software Tools for Technology

Transfer
Journal 1

0.85

11th European Symposium on Research in Computer

Security, Hamburg, Germany, September 18-20, 2006
Book chapter 1

0.85

4th European Conference, ECMDA-FA 2008, Berlin,

Germany, June 9-13, 2008. Proceedings
Book chapter 1

0.85

Computational Science and Its Applications – ICCSA 2005

Lecture Note

in computer

Science

1

0.85

Lecture Notes in Business Information Processing Book chapter 1

0.85

Computer Security – ESORICS 2003 Book chapter 1

0.85

Proceedings 11th International Symposium, RAID 2008,

Cambridge, MA, USA, September 15-17, 2008

Lecture Note

in computer

Science

1

0.85

Proceedings International Conference, ICAC3 2011, Mumbai,

India, January 28-29, 2011.
Book chapter 1

0.85

Advances in Information Security and Its Application Book chapter 1

0.85

www.manaraa.com

129

Proceedings First Asia Pacific Requirements Engineering

Symposium, APRES 2014, Auckland, New Zealand, April

28-29, 2014.

Book chapter 1

0.85

Lecture Notes in Computer Science Book chapter 1

0.85

CSI Transactions on ICT Journal 1

0.85

Proceedings 23rd IFIP WG 6.1 International Conference,

ICTSS 2011, Paris, France, November 7-10, 2011.

Lecture Note

in Computer

Science

1

0.85

Proceedings of the eighth ACM symposium on Access

control models and technologies - SACMAT '03
Symposium 1

0.85

NSPW '03 Proceedings of the 2003 workshop on New

security paradigms
Workshop 1

0.85

International Journal of Electronic Security and Digital

Forensics
Journal 1

0.85

PST '06 Proceedings of the 2006 International Conference on

Privacy, Security and Trust: Bridge the Gap Between PST

Technologies and Business Services

Conference 1

0.85

Proceedings of the 6th international conference on Web

engineering - ICWE '06
Conference 1

0.85

Proceedings of the 2008 international symposium on Software

testing and analysis ISSTA '08
Symposium 1

0.85

Proceedings of the 15th international conference on World

Wide Web WWW '06
Conference 1

0.85

Proceedings of the 44th annual southeast regional conference

on - ACM-SE 44
Conference 1

0.85

Proceedings of the 2007 workshop on Programming

languages and analysis for security - PLAS '07
Conference 1

0.85

USENIX-SS'06 Proceedings of the 15th conference on

USENIX Security Symposium
Conference 1

0.85

Proceedings of the 14th ACM conference on Computer and

communications security - CCS '07
Conference 1

0.85

Proceedings of the third international workshop on Dynamic

analysis - WODA '05
Workshop 1

0.85

SAC '07 Proceedings of the 2007 ACM symposium on

Applied computing
Symposium 1

0.85

SOSP '07 Proceedings of twenty-first ACM SIGOPS

symposium on Operating systems principles
Symposium 1

0.85

LCSD '07 Proceedings of the 2007 Symposium on Library-

Centric Software Design
Symposium 1

0.85

POPL '07 Proceedings of the 34th annual ACM SIGPLAN-

SIGACT symposium on Principles of programming

languages

Conference 1

0.85

EuroSys '09 Proceedings of the 4th ACM European Conference 1

www.manaraa.com

130

conference on Computer systems 0.85

Proceedings of the 2012 ACM annual conference on Human

Factors in Computing Systems - CHI '12
Conference 1

0.85

iiWAS '11 Proceedings of the 13th International Conference

on Information Integration and Web-based Applications and

Services

Conference 1

0.85

Quality and Reliability Engineering International Journal 1

0.85

Total 118

100.00

www.manaraa.com

131

References

[1] M. U. A. Khan and M. Zulkernine, “On Selecting Appropriate Development

Processes and Requirements Engineering Methods for Secure Software,” 2009

33rd Annu. IEEE Int. Comput. Softw. Appl. Conf., pp. 353–358, 2009.

[2] J. Jurjens, Secure Systems Development with UML. Springer, Berlin., 2004.

[3] G. McGraw, Software Security: Building Security In,. Addison Wesley, 2006.

[4] G. McGraw, “Testing for security during development: why we should scrap

penetrate-and-patch,” IEEE Aerosp. Electron. Syst. Mag., vol. 13, no. 4, pp. 13–15,

1998.

[5] Benjamin Fabian, T. Santen, and H. Schmidt, “A comparison of security

requirements engineering methods,” Requir. Eng., vol. 15, no. 1, pp. 7–40, 2010.

[6] M. Hadavi, V. Hamishagi, and H. Sangchi, “Security Requirements Engineering;

State of the Art and Research Challenges,” in Proceedings of the International

MultiConference of Engineers and Computer Scientists, 2008, vol. 8, pp. 19–21.

[7] P. Karpati, Y. Redda, A. L. Opdahl, and G. Sindre, “Comparing attack trees and

misuse cases in an industrial setting,” Inf. Softw. Technol., vol. 56, no. 3, pp. 294–

308, 2014.

[8] M. U. a. Khan and M. Zulkernine, “On Selecting Appropriate Development

Processes and Requirements Engineering Methods for Secure Software,” in 2009

33rd Annual IEEE International Computer Software and Applications Conference,

2009, vol. 2, pp. 353 – 358.

[9] D. Mellado, C. Blanco, L. E. Sánchez, and E. Fernández-Medina, “A systematic

review of security requirements engineering,” Comput. Stand. Interfaces, vol. 32,

no. 4, pp. 153–165, 2010.

[10] I. A. Tondel, M. G. Jaatun, and P. H. Meland, “Security Requirements for the Rest

of Us: A Survey,” Software, IEEE, vol. 5, no. 1, pp. 20 – 27, 2008.

[11] B. Musa Shuaibu, N. Md Norwawi, M. H. Selamat, and A. Al-Alwani,

“Systematic review of web application security development model,” Artif. Intell.

Rev., vol. 23, no. 2, pp. 259–276, 2013.

[12] I. Ghani and I. Yasin, “Software Security Engineering In Extreme Programming

Methodology: A Systematic Literature,” Sci. Int., vol. 25, no. 2, pp. 215–221,

2013.

www.manaraa.com

132

[13] F. Roeser, “Can Software Security be Successfully Implemented in Agile Software

Development? A Systematic Literature Review,” Florian Roeser Hochschule der

Medien. Nobelstr. 10, 70569 Stuttgart, Ger., pp. 1–20, 2010.

[14] B. A. and S. C. Kitchenham, “Guidelines for performing Systematic Literature

Reviews in Software Engineering,” 2007.

[15] G. McGraw, “Software Security,” Secur. Privacy, IEEE, vol. 2, no. 2, pp. 80–83,

2004.

[16] G. Mcgraw, “From the ground up: the DIMACS software security workshop,”

Secur. Privacy, IEEE, vol. 1, no. 2, pp. 59 – 66, 2007.

[17] G. McGraw and G. Hoglund, Exploiting Software: How to Break Code. Boston:

Addison- Wesley, 2004.

[18] D. Verdon and G. McGraw, “Risk analysis in software design,” IEEE Secur. Priv.

Mag., vol. 2, no. 4, pp. 79–84, 2004.

[19] C. P. S. Pfleeger., Security in Computing. Ptr: Prentice Hall, 2006.

[20] Jayaram K RAditya P Mathur, “Software Engineering for Secure Software - State

of the Art : A Survey Technical report, Purdue University,” 2005.

[21] C. E. . Landwehr, A. R. Bull, J. P. McDermott, and W. S. Choi, “A taxonomy of

computer program security flaws,” ACM Comput. Surv., vol. 26, no. 3, pp. 211–

254, 1994.

[22] M. U. a Khan and M. Zulkernine, “Quantifying security in secure software

development phases,” in 32nd Annual IEEE International Computer Software and

Applications, 2008. COMPSAC ’08., 2008, pp. 955–960.

[23] G. McGraw, “Building secure software: better than protecting bad software’,”

Software, IEEE, vol. 19, no. December, pp. 57–59, 2002.

[24] M. A. Hadavi, H. Shirazi, H. M. Sangchi, and V. S. Hamishagi, “Software

Security; A Vulnerability Activity Revisit,” 2008 Third Int. Conf. Availability,

Reliab. Secur., pp. 866–872, Mar. 2008.

[25] P. N. P. B. W. Boehm, “Understanding and controlling software costs - Software

Engineering, IEEE Transactions on,” IEEE Trans. Softw. Eng., vol. 14, no. 10, pp.

1462–1477, 1990.

[26] M. Umair, A. Khan, and M. Zulkernine, “A Survey on Requirements and Design

Methods for Secure Software Development *,” Ontario, Canada, 2009.

www.manaraa.com

133

[27] J. V. and G. McGraw, Building Secure Software. Addison- Wesley, 2002.

[28] J. Romero-Mariona, H. Ziv, and D. J. Richardson, “Formality of the Security

Specification Process: Benefits Beyond Requirements,” 2010 43rd Hawaii Int.

Conf. Syst. Sci., pp. 1–6, 2010.

[29] J. Gr, K. Buyens, B. De Win, R. Scandariato, W. Joosen, C. Science, K. U.

Leuven, and B.- Leuven, “On the Secure Software Development Process : CLASP

and SDL Compared,” in Proceeding SESS ’07 Proceedings of the Third

International Workshop on Software Engineering for Secure Systems, 2007, p. 1.

[30] G. Sindre and A. L. Opdahl, “Eliciting security requirements with misuse cases,”

Requir. Eng., vol. 10, no. 1, pp. 34–44, Jun. 2004.

[31] J. Romero-mariona and D. J. Richardson, “SRRS : A Recommendation System for

Security Requirements,” pp. 50–52, 2008.

[32] G. McGraw, “A Portal for Software Security,” Secur. Priv. Mag. IEEE, vol. 3, no.

4, pp. 75–79, 2005.

[33] G. Mcgraw, “Managing software security risks,” Computer (Long. Beach. Calif).,

vol. 35, no. 4, pp. 99–101, 2002.

[34] M. Howard and S. Lipner, “Inside the windows security push,” IEEE Secur. Priv.,

vol. 1, pp. 57–61, 2003.

[35] M. Howard, “Building more secure software with improved development

processes,” IEEE Secur. Priv. Mag., vol. 2, no. 6, pp. 63–65, 2004.

[36] W. PETERS, J. F. & PEDRYCZ, Software engineering : an engineering approach.

Wiley., 2000.

[37] J. A. O’Brien, Management Information Systems: Managing Information

Technology in the EBusiness Enterprise. New York: McGraw Hill., 2002.

[38] J. Britton, C. & Doake, Software System Development. A general introduction.

London :McGraw Hill., 2003.

[39] D. L. Post, J. & Anderson, Management information systems: Solving business

problems with information technology. McGraw Hill, 2003.

[40] L. A. Maciaszek, Requirements Analysis and System Design. Addison Wesley,

2001.

[41] L. I. Futrell, R. T., Shafer, D. F. & Shafer, Quality software project management.

Prentice Hall, 2002.

www.manaraa.com

134

[42] H. Van Vliet, Software engineering - principles and practice. New York: John

Wiley & Sons, 2002.

[43] F. G. Tompkins and R. S. Rice, “Integrating security activities into the software

development life cycle and the software quality assurance process,” Comput.

Secur., vol. 5, no. 3, pp. 218–242, Sep. 1986.

[44] R. L. Jones and A. Rastogi, “Secure Coding: Building Security into the Software

Development Life Cycle,” Inf. Syst. Secur., vol. 13, no. 5, pp. 29–39, Nov. 2004.

[45] R. Breu, K. Burger, M. Hafner, and G. Popp, “Towards a Systematic Development

of Secure Systems,” Inf. Syst. Secur., vol. 13, no. 3, pp. 5–13, May 2004.

[46] L. Futcher and R. Von Solms, “SecSDM : A Model for Integrating Security into

the Software Development Life Cycle,” in Proceedings of the 5 th World

Conference on Information Security Education, vol. 237, 2007, pp. 41–48.

[47] L. A. Futcher, “an integrated risk-based approach to support it undergraduate

students in secure software development,” Nelson Mandela Metropolitan

University, 2011.

[48] M. I. Daud, “Secure software development model: A guide for secure software life

cycle,” in Proceedings of the International MultiConference of Engineers and

Computer Scientists, 2010, vol. I.

[49] B. Taylor and S. Azadegan, “Threading secure coding principles and risk analysis

into the undergraduate computer science and information systems curriculum,” in

Proceedings of the 3rd annual conference on Information security curriculum

development - InfoSecCD ’06, 2006, p. 24.

[50] S. Lipner, “The Trustworthy Computing Security Development Lifecycle,” in 20th

Annual Computer Security Applications Conference, 2004, pp. 2–13.

[51] G. Sindre and A. L. Opdahl, “Eliciting security requirements by misuse cases,” in

2000. TOOLS-Pacific 2000. Proceedings. 37th International Conference on

Technology of Object-Oriented Languages and Systems, 2000, vol. 10, no. 1, pp.

34–44.

[52] R. Hassan, S. Bohner, S. El-Kassas, and M. Eltoweissy, “Goal-Oriented, B-Based

Formal Derivation of Security Design Specifications from Security

Requirements,” in Third International Conference on Availability, Reliability and

Security, 2008. ARES 08., 2008, pp. 1443–1450.

[53] B. Best, J. Jürjens, B. Nuseibeh, W. Hall, and M. Keynes, “Model-based Security

Engineering of Distributed Information Systems using UMLsec,” in ICSE 2007.

www.manaraa.com

135

29th International Conference on Software Engineering, 2007., 2007, pp. 581 –

590.

[54] a. Apvrille and M. Pourzandi, “Secure Software Development by Example,” IEEE

Secur. Priv. Mag., vol. 3, no. 4, pp. 10–17, Jul. 2005.

[55] J. Jürjens and P. Shabalin, “Tools for secure systems development with UML,” Int.

J. Softw. Tools Technol. Transf., vol. 9, no. 5–6, pp. 527–544, Jul. 2007.

[56] T. Lodderstedt and D. Basin, “SecureUML : A UML-Based Modeling Language

for Model-Driven Security,” in Proceedings Model Engineering, Concepts, and

Tools 5th International Conference Dresden, Germany, September 30 – October 4,

2002, 2002, pp. 426–441.

[57] Jan Jürjens, “UMLsec : Extending UML for Secure Systems Development,” in

Model Engineering, Concepts, and Tools 5th International Conference Dresden,

Germany, September 30 – October 4, 2002 Proceedings, 2002, pp. 412–425.

[58] I. Alexander, “Initial industrial experience of misuse cases in trade-off analysis,”

Proc. IEEE Jt. Int. Conf. Requir. Eng., 2002.

[59] J. McDermott and C. Fox, “Using abuse case models for security requirements

analysis,” in Proceedings 15th Annual Computer Security Applications Conference

(ACSAC’99), 1999, pp. 55–64.

[60] P. Salini and S. Kanmani, “Survey and analysis on Security Requirements

Engineering,” Comput. Electr. Eng., vol. 38, no. 6, pp. 1785–1797, 2012.

[61] D. Mu, V. Chiprianov, Laurent Gallon, and Philippe Aniort, “A Review of

Security Requirements Engineering Methods with Respect to Risk Analysis and

Model-Driven Engineering,” in Lecture Notes in Computer Science, 2014, pp. 79–

93.

[62] J. Du, Y. Ye, and Q. Wang, “An analysis for understanding software security

requirement methodologies,” in SSIRI 2009 - 3rd IEEE International Conference

on Secure Software Integration Reliability Improvement, 2009, pp. 141–149.

[63] R. Matulevičius and M. Dumas, “A Comparison of SecureUML and UMLsec for

Role-based Access Control,” in Proceedings of the 9th Conference on Databases

and Information Systems, 2010, pp. 171–185.

[64] C. Raspotnig and A. Opdahl, “Comparing risk identification techniques for safety

and security requirements,” J. Syst. Softw., vol. 86, no. 4, pp. 1124–1151, 2013.

www.manaraa.com

136

[65] S. Dasanayake, J. Markkula, and M. Oivo, “Concerns in Software Development –

A Systematic Mapping Study,” in Proceedings - 18th International Conference on

Evaluation and Assessment in Software Engineering, 2014, pp. 14–17.

[66] J. Webster and R. T. Watson, “Analyzing the past to prepare for the future:

Writing a literature review,” Manag. Inf. Syst. Q. 26.2 3, vol. 26, no. 2, 2003.

[67] C. Wohlin, “Guidelines for Snowballing in Systematic Literature Studies and a

Replication in Software Engineering,” in EASE ’14 Proceedings of the 18th

International Conference on Evaluation and Assessment in Software Engineering,

2014.

[68] L. Lin, D. Ince, W. Hall, M. K. Mk, E. L. C. Lin, B. Nuseibeh, D. C. Ince, and M.

Jackson, “Using Abuse Frames to Bound the Scope of Security Problems,” in

Requirements Engineering Conference, 2004. Proceedings. 12th IEEE

International, 2004, pp. 3–4.

[69] C. B. Haley, R. Laney, J. D. Moffett, and B. Nuseibeh, “Security Requirements

Engineering: A Framework for Representation and Analysis,” IEEE Trans. Softw.

Eng., vol. 34, no. 1, pp. 133–153, Jan. 2008.

[70] C. B. Haley, W. Hall, J. D. Moffett, and R. Laney, “A Framework for Security

Requirements Engineering,” in SESS ’06 Proceedings of the 2006 international

workshop on Software engineering for secure systems, 2006, pp. 35–41.

[71] K. R. van Wyk and G. McGraw, “Bridging the Gap between Software

Development and Information Security,” Secur. Privacy, IEEE, vol. 3, no. 5, pp.

75–79, Sep. 2005.

[72] M. Kainerstorfer, J. Sametinger, and A. Wiesauer, “Software Security for Small

Development Teams – A Case Study,” in iiWAS ’11 Proceedings of the 13th

International Conference on Information Integration and Web-based Applications

and Services, 2011, pp. 5–7.

[73] D. P. Gilliam, T. L. Wolfe, J. S. Sherif, and M. Bishop, “Software security

checklist for the software life cycle,” WET ICE 2003. Proceedings. Twelfth IEEE

Int. Work. Enabling Technol. Infrastruct. Collab. Enterp. 2003., pp. 243–248,

2003.

[74] M. Essafi, L. Labed, and H. Ben Ghezala, “S2D-ProM: A Strategy Oriented

Process Model for Secure Software Development,” in International Conference on

Software Engineering Advances (ICSEA 2007), 2007, no. Icsea, pp. 24–24.

[75] G. Sindre and A. L. Opdahl, “Eliciting security requirements with misuse cases,”

Requir. Eng., vol. 10, no. 1, pp. 34–44, Jun. 2004.

www.manaraa.com

137

[76] M. Hussein and M. Zulkernine, “UMLintr: a UML profile for specifying

intrusions,” in 13th Annual IEEE International Symposium and Workshop on

Engineering of Computer-Based Systems (ECBS’06), 2006, p. 8 pp.–288.

[77] M. Raihan, M. Zulkernine, “AsmLSec : An Extension of Abstract State Machine

Language for Attack,” in The Second International Conference on Availability,

Reliability and Security, 2007. ARES 2007., 2007, pp. 775 – 782.

[78] P. Diaz, I. Aedo, D. Sanz, and A. Malizia, “A model-driven approach for the visual

specification of Role-Based Access Control policies in web systems,” IEEE Symp.

Vis. Lang. Human-Centric Comput. 2008. VL/HCC 2008., pp. 203–210, 2008.

[79] H. Hu and G. Ahn, “Constructing Authorization Systems Using Assurance

Management Framework,” IEEE Trans. Syst. Man, Cybern. Part C Appl. Rev., vol.

40, no. 4, pp. 396–405, 2010.

[80] G. Georg, F. Collins, I. Ray, and R. France, “Using Aspects to Design a Secure

System,” in Proceedings. Eighth IEEE International Conference on Engineering

of Complex Computer Systems,2002., 2002, pp. 117 – 126.

[81] H. Gomaa, “Modeling Complex Systems by Separating Application and Security

Concerns,” in Proceedings. Ninth IEEE International Conference on Engineering

Complex Computer Systems, 2004., 2004, pp. 19 – 28.

[82] M. Menzel and C. Meinel, “SecureSOA Modelling Security Requirements for

Service-Oriented Architectures,” 2010 IEEE Int. Conf. Serv. Comput., pp. 146–

153, Jul. 2010.

[83] M. Menzel and C. Meinel, “A Security Meta-model for Service-Oriented

Architectures,” 2009 IEEE Int. Conf. Serv. Comput., pp. 251–259, 2009.

[84] D. Informatics and T. U. Munich, “Sound Methods and Effective Tools for Model-

based Security Engineering with UML,” in Proceedings. 27th International

Conference on Software Engineering, 2005. ICSE 2005., 2005, pp. 322 – 331.

[85] J. Jürjens, M. Lehrhuber, G. Wimmel, and T. U. München, “Model-Based Design

and Analysis of Permission-Based Security,” in Proceedings. 10th IEEE

International Conference on Engineering of Complex Computer Systems, 2005.

ICECCS 2005., 2005.

[86] J. Jan, P. Bartmann, and S. Jörg, “Model-based Security Analysis for Mobile

Communications,” in ICSE ’08 Proceedings of the 30th international conference

on Software engineerin, 2008, vol. 2, pp. 683–692.

www.manaraa.com

138

[87] D. Xu, S. Member, and K. E. Nygard, “Threat-Driven Modeling and Verification

of Secure Software Using Aspect-Oriented Petri Nets,” IEEE Trans. Softw. Eng.,

vol. 32, no. 4, pp. 265–278, 2006.

[88] L. Yu, R. France, I. Ray, and S. Ghosh, “A Rigorous Approach to Uncovering

Security Policy Violations in UML Designs,” 2009 14th IEEE Int. Conf. Eng.

Complex Comput. Syst., pp. 126–135, 2009.

[89] a. Tappenden, P. Beatty, J. Miller, a. Geras, and M. Smith, “Agile security testing

of Web-based systems via HTTPUnit,” Agil. Dev. Conf., pp. 29–38, 2005.

[90] H. Shahriar and M. Zulkernine, “Mutation-Based Testing of Buffer Overflow

Vulnerabilities,” COMPSAC ’08. 32nd Annu. IEEE Int. Comput. Softw. Appl.

2008., pp. 979–984, 2008.

[91] X.-S. Zhang, Lin Shao, and Jiong Zheng, “A NOVEL METHOD OF SOFTWARE

VULNERABILITY DETECTION BASED ON FUZZING TECHNIQUE,” in

ICACIA 2008. International Conference on Apperceiving Computing and

Intelligence Analysis, 2008., 2008, pp. 270–273.

[92] H. Shahriar and M. Zulkernine, “Mutation-Based Testing of Format String Bugs,”

11th IEEE High Assur. Syst. Eng. Symp. 2008. HASE 2008, pp. 229–238, Dec.

2008.

[93] M. Junjin, “An Approach for SQL Injection Vulnerability Detection,” Sixth Int.

Conf. Inf. Technol. New Gener. 2009. ITNG ’09., pp. 1411–1414, 2009.

[94] A. Kie, P. J. Guo, and M. D. Ernst, “Automatic Creation of SQL Injection and

Cross-Site Scripting Attacks,” in IEEE 31st International Conference on Software

Engineering, 2009. ICSE 2009., 2009, pp. 199–209.

[95] H. Shahriar and M. Zulkernine, “MUSIC: Mutation-based SQL Injection

Vulnerability Checking,” QSIC ’08. Eighth Int. Conf. Qual. Software, 2008., pp.

77–86, Aug. 2008.

[96] W. Allen, C. Dou, and G. Marin, “A Model-based Approach to the Security

Testing of Network Protocol Implementations,” Proceedings. 2006 31st IEEE

Conf. Local Comput. Networks, pp. 1008–1015, Nov. 2006.

[97] H. Kim, Y. Choi, D. Lee, and D. Lee, “Practical Security Testing using File

Fuzzing,” ICACT 2008. 10th Int. Conf. Adv. Commun. Technol. 2008., vol. 2, pp.

1304–1307, Feb. 2008.

[98] J. Offutt, “Bypass Testing of Web Applications,” 15th Int. Symp. Softw. Reliab.

Eng. 2004. ISSRE 2004., pp. 187–197, 2004.

www.manaraa.com

139

[99] H. Shahriar and M. Zulkernine, “MUTEC : Mu tation-based Te sting of C ross Site

Scripting School of Computing,” in ICSE Workshop on Software Engineering for

Secure Systems, 2009. SESS ’09., 2009, pp. 47–53.

[100] C. Del Grosso, G. Antoniol, E. Merlo, and P. Galinier, “Detecting buffer overflow

via automatic test input data generation,” Comput. Oper. Res., vol. 35, no. 10, pp.

3125–3143, Oct. 2008.

[101] S. Mcallister, E. Kirda, and C. Kruegel, “Leveraging User Interactions for In-

Depth Testing of Web Applications,” in Proceedings 11th International

Symposium, RAID 2008, Cambridge, MA, USA, September 15-17, 2008., 2008, pp.

191–210.

[102] S. F. Hidhaya and A. Geetha, “Intrusion Protection against SQL Injection and

Cross Site Scripting Attacks Using a Reverse Proxy,” in Communications in

Computer and Information Science, 2012, pp. 252–263.

[103] A. Mammar, A. Cavalli, W. Jimenez, W. Mallouli, and E. M. De Oca, “Using

Testing Techniques for Vulnerability Detection in C Programs,” in Proceedings

23rd IFIP WG 6.1 International Conference, ICTSS 2011, Paris, France,

November 7-10, 2011., 2011, pp. 80–96.

[104] R. Xu, P. Godefroid, and R. Majumdar, “Testing for Buffer Overflows with

Length Abstraction,” in Proceedings of the 2008 international symposium on

Software testing and analysis ISSTA ’08, 2008, pp. 27–37.

[105] S. Kals, E. Kirda, C. Kruegel, and N. Jovanovic, “SecuBat : A Web Vulnerability

Scanner,” in Proceedings of the 15th international conference on World Wide Web

WWW ’06, 2006, pp. 247–256.

[106] W. Du and A. P. Mathur, “Testing for software vulnerability using environment

perturbation,” Qual. Reliab. Eng. Int., vol. 18, no. 3, pp. 261–272, May 2002.

[107] M. Weber, V. Shah, and C. Ren, “A case study in detecting software security

vulnerabilities using constraint optimization,” Proc. First IEEE Int. Work. Source

Code Anal. Manip., pp. 1–11, 2001.

[108] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy : A Static Analysis Tool for

Detecting Web Application Vulnerabilities (Short Paper),” in IEEE Symposium

on Security and Privacy, 2006, 2006, p. 6 pp. – 263.

[109] G. Wassermann and Z. Su, “Static detection of cross-site scripting vulnerabilities,”

in 30th International Conference on Software Engineering, 2008. ICSE ’08., 2008,

p. 171.

www.manaraa.com

140

[110] D. Evans, D. ;Larochelle, “Improving Security Using Extensible Lightweight

Static Analysis,” Software, IEEE, vol. 19, no. 1, pp. 42 – 51, 2002.

[111] J. Zhu, J. Xie, H. R. Lipford, and B. Chu, “Supporting secure programming in web

applications through interactive static analysis,” J. Adv. Res., vol. 5, no. 4, pp.

449–462, Jul. 2014.

[112] B. Hackett, M. Das, D. Wang, and Z. Yang, “Modular Checking for Buffer

Overflows in the Large,” in ICSE ’06 Proceedings of the 28th international

conference on Software engineering, 2006, pp. 232–241.

[113] J.-E. J. Tevis and J. a. Hamilton, “Static analysis of anomalies and security

vulnerabilities in executable files,” in Proceedings of the 44th annual southeast

regional conference on - ACM-SE 44, 2006, p. 560.

[114] K. Chen and D. Wagner, “Large-scale analysis of format string vulnerabilities in

Debian Linux,” in Proceedings of the 2007 workshop on Programming languages

and analysis for security - PLAS ’07, 2007, p. 75.

[115] Y. Xie, “Static Detection of Security Vulnerabilities in Scripting Languages,” in

USENIX-SS’06 Proceedings of the 15th conference on USENIX Security

Symposium, 2006, vol. 15, pp. 147–160.

[116] G. Agosta, A. Barenghi, A. Parata, and G. Pelosi, “Automated Security Analysis of

Dynamic Web Applications through Symbolic Code Execution,” 2012 Ninth Int.

Conf. Inf. Technol. New Gener. (ITNG), pp. 189–194, Apr. 2012.

[117] H. AL-Amro and E. El-Qawasmeh, “Discovering security vulnerabilities and leaks

in ASP.NET websites,” in 2012 International Conference on Cyber Security,

Cyber Warfare and Digital Forensic (CyberSec), 2012, pp. 329–333.

[118] A. Mohosina and M. Zulkernine, “DESERVE: A Framework for Detecting

Program Security Vulnerability Exploitations,” 2012 IEEE Sixth Int. Conf. Softw.

Secur. Reliab., pp. 98–107, Jun. 2012.

[119] T. Scholte, W. Robertson, D. Balzarotti, and E. Kirda, “Preventing Input

Validation Vulnerabilities in Web Applications through Automated Type

Analysis,” (COMPSAC), 2012 IEEE 36th Annu. Comput. Softw. Appl. Conf., pp.

233–243, Jul. 2012.

[120] A. Aggarwal and P. Jalote, “Integrating Static and Dynamic Analysis for Detecting

Vulnerabilities,” 30th Annu. Int. Comput. Softw. Appl. Conf., vol. 1, pp. 343–350,

2006.

www.manaraa.com

141

[121] M. Muthuprasanna, K. Wei, and S. Kothari, “Eliminating SQL Injection Attacks -

A Transparent Defense Mechanism,” in 2006 Eighth IEEE International

Symposium on Web Site Evolution (WSE’06), 2006, pp. 22–32.

[122] M. Monga, R. Paleari, and E. Passerini, “A Hybrid Analysis Framework for

Detecting Web Application Vulnerabilities,” in SESS ’09. ICSE Workshop on

Software Engineering for Secure Systems, 2009., 2009, pp. 25–32.

[123] D. Balzarotti, M. Cova, V. V. Felmetsger, and G. Vigna, “Multi-module

vulnerability analysis of web-based applications,” in Proceedings of the 14th ACM

conference on Computer and communications security - CCS ’07, 2007, p. 25.

[124] W. G. J. Halfond and A. Orso, “Combining static analysis and runtime monitoring

to counter SQL-injection attacks,” in Proceedings of the third international

workshop on Dynamic analysis - WODA ’05, 2005, pp. 1–7.

[125] M. Johns and C. Beyerlein, “SMask : Preventing Injection Attacks in Web

Applications by Approximating Automatic Data / Code Separation,” in SAC ’07

Proceedings of the 2007 ACM symposium on Applied computing, 2007, pp. 284–

291.

[126] T. Tsai and N. Singh, “Libsafe: transparent system-wide protection against buffer

overflow attacks,” Proceedings. Int. Conf. Dependable Syst. Networks, 2002. DSN

2002., p. 541, 2002.

[127] I. C. Computacionales, C. Scientifique, and M. Bât, “AProSec : an Aspect for

Programming Secure Web Applications,” in The Second International Conference

on Availability, Reliability and Security, 2007. ARES 2007., 2007, no. 1.

[128] S. Chong, J. Liu, A. C. Myers, X. Qi, K. V. Lantian, and Z. Xin, “Secure Web

Applications via Automatic Partitioning,” in SOSP ’07 Proceedings of twenty-first

ACM SIGOPS symposium on Operating systems principles, 2007, pp. 31–44.

[129] N. Juillerat, “Enforcing Code Security in Database Web Applications Using

Libraries and Object Models,” in LCSD ’07 Proceedings of the 2007 Symposium

on Library-Centric Software Design, 2007, pp. 31–41.

[130] J. Xie, H. Lipford, and B.-T. Chu, “Evaluating interactive support for secure

programming,” in Proceedings of the 2012 ACM annual conference on Human

Factors in Computing Systems - CHI ’12, 2012, p. 2707.

[131] H. Nishiyama, “SecureC: control-flow protection against general buffer overflow

attack,” 29th Annu. Int. Comput. Softw. Appl. Conf., vol. 1, pp. 149–155, 2005.

[132] J. R. Cordy and T. R. Dean, “Enhancing Security Using Legality Assertions,” 12th

Work. Conf. Reverse Eng., no. 2, pp. 35–44, 2005.

www.manaraa.com

142

[133] E. Ofuonye and J. Miller, “Resolving JavaScript Vulnerabilities in the Browser

Runtime,” 2008 19th Int. Symp. Softw. Reliab. Eng., pp. 57–66, Nov. 2008.

[134] D. Yu, A. Chander, N. Islam, and I. Serikov, “JavaScript instrumentation for

browser security,” in POPL ’07 Proceedings of the 34th annual ACM SIGPLAN-

SIGACT symposium on Principles of programming languages, 2007, vol. 42, no.

1, p. 237.

[135] J.-C. Lin and J.-M. Chen, “The Automatic Defense Mechanism for Malicious

Injection Attack,” 7th IEEE Int. Conf. Comput. Inf. Technol. (CIT 2007), pp. 709–

714, Oct. 2007.

[136] A. Smirnov and T. Chiueh, “Automatic Patch Generation for Buffer Overflow

Attacks,” Third Int. Symp. Inf. Assur. Secur. 2007. IAS 2007, pp. 165–170, Aug.

2007.

[137] F. Dysart and M. Sherriff, “Automated Fix Generator for SQL Injection Attacks,”

2008 19th Int. Symp. Softw. Reliab. Eng., pp. 311–312, Nov. 2008.

[138] Q. Gao, W. Zhang, Y. Tang, and F. Qin, “First-Aid : Surviving and Preventing

Memory Management Bugs during Production Runs,” in EuroSys ’09 Proceedings

of the 4th ACM European conference on Computer systems, 2009, pp. 159–172.

[139] D. Mellado, E. Fernández-Medina, and M. Piattini, “A common criteria based

security requirements engineering process for the development of secure

information systems,” Comput. Stand. Interfaces, vol. 29, no. 2, pp. 244–253, Feb.

2007.

[140] D. Mellado and E. Fern, “Applying a Security Requirements Engineering

Process,” in Proceedings 11th European Symposium on Research in Computer

Security, Hamburg, Germany, September 18-20, 2006., 2006, pp. 192–206.

[141] D. Mellado, E. Fernández-medina, and M. Piattini, “Security Requirements

Management in Software Product Line Engineering,” in Communications in

Computer and Information Science, 2009, pp. 250–263.

[142] H. Mouratidis, P. Giorgini, and G. Manson, “When security meets software

engineering: a case of modelling secure information systems,” Inf. Syst., vol. 30,

no. 8, pp. 609–629, Dec. 2005.

[143] P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone, “Requirements

engineering for trust management: model, methodology, and reasoning,” Int. J. Inf.

Secur., vol. 5, no. 4, pp. 257–274, Aug. 2006.

www.manaraa.com

143

[144] L. Dai and K. Cooper, “Using FDAF to bridge the gap between enterprise and

software architectures for security,” Sci. Comput. Program., vol. 66, no. 1, pp. 87–

102, Apr. 2007.

[145] L. Dai and K. Cooper, “Modeling and performance analysis for security aspects,”

Sci. Comput. Program., vol. 61, no. 1, pp. 58–71, Jun. 2006.

[146] M. Giordano, G. Polese, G. Scanniello, and G. Tortora, “A system for visual role-

based policy modelling,” J. Vis. Lang. Comput., vol. 21, no. 1, pp. 41–64, Feb.

2010.

[147] S. Kim, D.-K. Kim, L. Lu, S. Kim, and S. Park, “A feature-based approach for

modeling role-based access control systems,” J. Syst. Softw., vol. 84, no. 12, pp.

2035–2052, Dec. 2011.

[148] J. a. Pavlich-Mariscal, S. a. Demurjian, and L. D. Michel, “A framework of

composable access control features: Preserving separation of access control

concerns from models to code,” Comput. Secur., vol. 29, no. 3, pp. 350–379, May

2010.

[149] J. Trujillo, E. Soler, E. Fernández-Medina, and M. Piattini, “An engineering

process for developing Secure Data Warehouses,” Inf. Softw. Technol., vol. 51, no.

6, pp. 1033–1051, Jun. 2009.

[150] E. Fernández-Medina, J. Trujillo, R. Villarroel, and M. Piattini, “Developing

secure data warehouses with a UML extension,” Inf. Syst., vol. 32, no. 6, pp. 826–

856, Sep. 2007.

[151] E. Fernández-Medina and M. Piattini, “Designing secure databases,” Inf. Softw.

Technol., vol. 47, no. 7, pp. 463–477, May 2005.

[152] J. Abramov, A. Sturm, and P. Shoval, “Evaluation of the Pattern-based method for

Secure Development (PbSD): A controlled experiment,” Inf. Softw. Technol., vol.

54, no. 9, pp. 1029–1043, Sep. 2012.

[153] J. Abramov, O. Anson, M. Dahan, P. Shoval, and A. Sturm, “A methodology for

integrating access control policies within database development,” Comput. Secur.,

vol. 31, no. 3, pp. 299–314, May 2012.

[154] B. Vela, C. Blanco, E. Fernández-Medina, and E. Marcos, “A practical application

of our MDD approach for modeling secure XML data warehouses,” Decis.

Support Syst., vol. 52, no. 4, pp. 899–925, Mar. 2012.

[155] M. Clavel, V. Silva, C. Braga, and M. Egea, “Model-Driven Security in Practice :

An Industrial Experience,” in Lecture Notes in Computer Science, 2008, pp. 326–

337.

www.manaraa.com

144

[156] D. Basin, J. Doser, and T. Lodderstedt, “Model driven security for process-

oriented systems,” Proc. eighth ACM Symp. Access Control Model. Technol. -

SACMAT ’03, p. 100, 2003.

[157] M. Zulkernine, M. Graves, and M. U. A. Khan, “Integrating software

specifications into intrusion detection,” Int. J. Inf. Secur., vol. 6, no. 5, pp. 345–

357, May 2007.

[158] S. Choi, S. Chae, and G. Lee, “SRS-Tool : A Security Functional Requirement

Specification Development Tool for Application Information System of

Organization SRS-Process : A Development Process for SRS,” in Computational

Science and Its Applications – ICCSA 2005, 2005, pp. 458–467.

[159] M. Memon, G. D. Menghwar, M. H. Depar, A. a. Jalbani, and W. M. Mashwani,

“Security modeling for service-oriented systems using security pattern refinement

approach,” Softw. Syst. Model., vol. 13, no. 2, pp. 549–572, Aug. 2012.

[160] R. Breu, M. Hafner, F. Innerhofer-Oberperfler, and F. Wozak, “Model-Driven

Security Engineering of Service Oriented Systems,” in Lecture Notes in Business

Information Processing, 2008, p. pp 59–71.

[161] K. Buyens, R. Scandariato, and W. Joosen, “Least privilege analysis in software

architectures,” Softw. Syst. Model., vol. 12, no. 2, pp. 331–348, Nov. 2011.

[162] B. Hoisl, S. Sobernig, and M. Strembeck, “Modeling and enforcing secure object

flows in process-driven SOAs : an integrated model-driven approach,” Softw. Syst.

Model., pp. 513–548, 2014.

[163] M. Koch and F. Parisi-Presicce, “UML specification of access control policies and

their formal verification,” Softw. Syst. Model., vol. 5, no. 4, pp. 429–447, Oct.

2006.

[164] R. Heldal and F. Hultin, “Bridging Model-Based and Language-Based Security,”

in Computer Security – ESORICS 2003, 2003, pp. 235–252.

[165] A. Singhal, “Development of Agile Security Framework Using a Hybrid

Technique for Requirements Elicitation,” in Proceedings International

Conference, ICAC3 2011, Mumbai, India, January 28-29, 2011., 2011, pp. 178–

188.

[166] A. Alkussayer and W. H. Allen, “The ISDF Framework : Integrating Security

Patterns and Best Practices,” in Advances in Information Security and Its

Application, Springer, 2009, pp. 17–28.

[167] S. Yahya, M. Kamalrudin, S. Sidek, and J. Grundy, “Capturing Security

Requirements Using Essential Use Cases (EUCs),” in Proceedings First Asia

www.manaraa.com

145

Pacific Requirements Engineering Symposium, APRES 2014, Auckland, New

Zealand, April 28-29, 2014., 2014, pp. 16–30.

[168] E. Paja, F. Dalpiaz, and P. Giorgini, “STS-Tool : Security Requirements

Engineering for Socio-Technical Systems,” in Lecture Notes in Computer Science,

2014, pp. 65–96.

[169] K. Chatterjee, D. Gupta, and A. De, “‘A framework for development of secure

software,’” CSI Trans. ICT, vol. 1, no. 2, pp. 143–157, Mar. 2013.

[170] H. Suleiman and D. Svetinovic, “Evaluating the effectiveness of the security

quality requirements engineering (SQUARE) method : a case study using smart

grid advanced metering infrastructure,” Requir. Eng., pp. 251–279, 2013.

[171] N. R. Mead and T. Stehney, “Security quality requirements engineering

(SQUARE) methodology,” SESS ’05 Proc. 2005 Work. Softw. Eng. Secur. Syst.

Trust. Appl., pp. 1–7, Jul. 2005.

[172] J. Viega, “Building Security Requirements with CLASP,” in SESS ’05

Proceedings of the 2005 workshop on Software engineering for secure systems—

building trustworthy applications, 2005, pp. 1–7.

[173] I. Flechais, C. Mascolo, and M. A. Sasse, “INTEGRATING SECURITY AND

USABILITY INTO THE REQUIREMENTS AND DESIGN PROCESS,” Int. J.

Electron. Secur. Digit. Forensics, vol. 1, no. 1, pp. 12–26, 2007.

[174] I. Fle, M. A. Sasse, and S. M. V Hailes, “Bringing Security Home : A process for

developing secure and usable systems,” in NSPW ’03 Proceedings of the 2003

workshop on New security paradigms, 2003, pp. 49–57.

[175] M. Graves, “Bridging the Gap : Software Specification Meets Intrusion Detector,”

in PST ’06 Proceedings of the 2006 International Conference on Privacy, Security

and Trust: Bridge the Gap Between PST Technologies and Business Services,

2006, pp. 1–8.

[176] X. Ge, R. F. Paige, F. a. C. Polack, H. Chivers, and P. J. Brooke, “Agile

development of secure web applications,” in Proceedings of the 6th international

conference on Web engineering - ICWE ’06, 2006, p. 305.

[177] I. Banerjee, B. Nguyen, V. Garousi, and A. Memon, “Graphical user interface

(GUI) testing: Systematic mapping and repository,” Inf. Softw. Technol., vol. 55,

no. 10, pp. 1679–1694, 2013.

[178] T. Okubo and H. Tanaka, “Identifying Security Aspects in Early Development

Stages,” 2008 Third Int. Conf. Availability, Reliab. Secur., pp. 1150–1157, 2008.

www.manaraa.com

146

[179] M. Talib, Adel Khelifi, and Leon Jololian, “Secure Software Engineering: A New

Teaching Perspective Based on the SWEBOK,” Interdiscip. J. Information,

Knowledge, Manag., vol. 5, pp. 83–99, 2010.

[180] A. Souag, “Towards a New Generation of Security Requirements Definition

Methodology Using Ontologies,” 24th Int. Conf. Adv. Inf. Syst. Eng., 2012.

[181] Y. Alotaibi and F. Liu, “How to Model a Secure Information System (IS): A Case

Study,” Int. J. Inf. Educ. Technol., vol. 2, no. 2, pp. 94–102, 2012.

[182] a Youseef and F. Liu, “A New Framework to Model a Secure E-Commerce

System,” World Acad. Sci. Eng. Technol., vol. 6, no. 1, pp. 6–12, 2012.

[183] C. Y. Lester and F. Jamerson, “Incorporating software security into an

undergraduate software engineering course,” in Proceedings - 2009 3rd

International Conference on Emerging Security Information, Systems and

Technologies, SECURWARE 2009, 2009, pp. 161–166.

[184] G. Elahi, “Security Requirements Engineering: State of the Art and Practice and

Challenges,” 2009.

[185] H. H. Albreiki and Q. H. Mahmoud, “Evaluation of Static Analysis Tools for

Software Security,” in 10th International Conference on Innovations in

Information Technology (INNOVATIONS), 2014, 2014, pp. 93–98.

[186] K. Schneider, E. Knauss, S. Houmb, S. Islam, and J. Jürjens, “Enhancing security

requirements engineering by organizational learning,” Requir. Eng., vol. 17, no. 1,

pp. 35–56, 2012.

[187] O. Daramola, Y. Pan, P. Karpati, and G. Sindre, “A comparative review of i*-

based and use case-based security modelling initiatives,” Proc. - Int. Conf. Res.

Challenges Inf. Sci., 2012.

[188] N. Ikram, S. Siddiqui, and N. F. Khan, “Security Requirement Elicitation

Techniques : The Comparison of Misuse Cases and Issue Based Information

Systems,” in 2014 IEEE Fourth International Workshop on Empirical

Requirements Engineering (EmpiRE), 2014, pp. 36–43.

[189] J. Heikka, “Abuse Cases Revised : An Action Research Experience 2 . Existing

Research on Abuse and Misuse Cases,” in The Tenth Pacific Asia Conference on

Information Systems (PACIS 2006), 2006, no. Pacis, pp. 673–684.

[190] M. N. Johnstone, “Modelling misuse cases as a means of capturing security

requirements,” Proc. 9th Aust. Inf. Secur. Manag. Conf., pp. 140–147, 2011.

www.manaraa.com

147

[191] F. Massacci and F. Paci, “How to Select a Security Requirements Method? A

Comparative Study with Students and Practitioners,” Proc. 17th Nord. Conf.

Secur. {IT} Syst., pp. 89–104, 2012.

[192] K. Labunets, F. Massacci, F. Paci, and L. M. S. Tran, “An experimental

comparison of two risk-based security methods,” Int. Symp. Empir. Softw. Eng.

Meas., pp. 163–172, 2013.

[193] K. Labunets, “Empirical Validation of Security Methods,” in 2013 ACM / IEEE

International Symposium on Empirical Software Engineering and Measurement,

2013.

[194] P. L. P. Li and B. C. B. Cui, “A comparative study on software vulnerability static

analysis techniques and tools,” Inf. Theory Inf. Secur. (ICITIS), 2010 IEEE Int.

Conf., 2010.

[195] K. Beznosov and B. Chess, “Security for the Rest of Us: An Industry Perspective

on the Secure-Software Challenge,” Software, IEEE, vol. 25, no. 1, pp. 10–12,

2008.

[196] T. Okubo, K. Taguchi, H. Kaiya, and N. Yoshioka, “MASG: Advanced Misuse

Case Analysis Model with Assets and Security Goals,” J. Inf. Process., vol. 22, no.

3, pp. 536–546, 2014.

[197] S. Hedayatpour, N. Kama, and S. Chuprat, “Analyzing Security Aspects during

Software Design Phase using Attack-based Analysis Model,” Int. J. Softw. Eng. Its

Appl., vol. 8, no. 3, pp. 143–156, 2014.

[198] C. C. R. Busby-earle, R. B. France, and I. Ray, “Analysing Requirements to Detect

Latent Security Vulnerabilities,” in (SERE-C), 2014 IEEE Eighth International

Conference on Software Security and Reliability-Companion, 2014, pp. 168 – 175.

[199] M. Riaz, J. Slankas, J. King, L. Williams, and N. Carolina, “Using Templates to

Elicit Implied Security Requirements from Functional Requirements A Controlled

Experiment,” in ESEM ’14 Proceedings of the 8th ACM/IEEE International

Symposium on Empirical Software Engineering and Measurement, 2014, pp. 18–

19.

[200] M. Riaz, J. Slankas, J. King, L. Williams, and N. Carolina, “Using Templates to

Elicit Implied Security Requirements from Functional Requirements A Controlled

Experiment,” in · Proceeding ESEM ’14 Proceedings of the 8th ACM/IEEE

International Symposium on Empirical Software Engineering and Measurement,

2014, pp. 18–19.

[201] Y. Alotaibi, “Business process modelling challenges and solutions: a literature

review,” J. Intell. Manuf., 2014.

www.manaraa.com

148

[202] Y. Alotaibi and F. Liu, “A novel secure business process modeling approach and

its impact on business performance,” Inf. Sci. (Ny)., vol. 277, pp. 375–395, 2014.

[203] P. H. Nguyen, J. Klein, Y. Le Traon, M. E. Kramer, and Y. Le Traon, “A

Systematic Review of Model-Driven Security,” 2013 20th Asia-Pacific Softw. Eng.

Conf., pp. 432–441, 2013.

[204] G. Díaz and J. R. Bermejo, “Static analysis of source code security: Assessment of

tools against SAMATE tests,” Inf. Softw. Technol., vol. 55, no. 8, pp. 1462–1476,

2013.

[205] Z. Zhioua, S. Short, and Y. Roudier, “Static Code Analysis for Software Security

Verification: Problems and Approaches,” 2014 IEEE 38th Int. Comput. Softw.

Appl. Conf. Work., pp. 102–109, 2014.

[206] M. K. Gupta, M. C. Govil, and G. Singh, “An Approach to Minimize False

Positive in SQLI Vulnerabilities Detection Techniques through Data Mining,” in

2014 International Conference on Signal Propagation and Computer Technology

(ICSPCT), 2014, pp. 407–410.

[207] M. Kulenovic and D. Donko, “A survey of static code analysis methods for

security vulnerabilities detection,” 2014 37th Int. Conv. Inf. Commun. Technol.

Electron. Microelectron., no. May, pp. 1381–1386, 2014.

[208] V. Rafael, L. De Mendonça, and C. L. Rodrigues, “Static Analysis Techniques and

Tools : A Systematic Mapping Study,” CSEA 2013 Eighth Int. Conf. Softw. Eng.

Adv., no. c, pp. 72–78, 2013.

[209] H. Shahriar and M. Zulkernine, “Mitigating program security vulnerabilities:

Approaches and challenges,” ACM Comput. Surv., vol. 44, no. 3, pp. 1–46, 2012.

[210] M. Lapke, “InjectIng SecurIty Into InformatIon SyStemS Development,” Port. J.

Manag. Stud., pp. 235–248, 2010.

[211] H. Mouratidis, “Secure Software Systems Engineering: The Secure Tropos

Approach,” J. Softw., vol. 6, no. 3, 2011.

[212] T. Li and J. Horkoff, “Dealing with security requirements for socio-technical

systems: A holistic approach,” Lect. Notes Comput. Sci. (including Subser. Lect.

Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 8484 LNCS, pp. 285–300,

2014.

[213] H. Mouratidis, A. Sunyaev, and J. Jurjens, “Secure Information Systems

Engineering: Experiences and Lessons Learned from Two Health Care Projects,”

21st Int. Conf. CAiSE 2009, Amsterdam, Netherlands, June 8-12, 2009. Proc., pp.

231–245, 2009.

www.manaraa.com

149

[214] N. Argyropoulos, “Designing secure software systems Combining goal-oriented

modeling and risk management,” Utrecht University, 2014.

[215] N. Mead, “How to compare the Security Quality Requirements Engineering

(SQUARE) method with other methods,” C. SEI, no. August, 2007.

[216] J. Romero-Mariona, H. Ziv, and D. J. Richardson, “Formality of the security

specification process: Benefits beyond requirements,” Proc. Annu. Hawaii Int.

Conf. Syst. Sci., pp. 1–6, 2010.

[217] J. Romero-Mariona, H. Ziv, and D. Richardson, “SRRS: a recommendation system

for security requirements,” Proc. 2008 Int. Work. Recomm. Syst. Softw. Eng., pp.

50–52, 2008.

[218] L. Rostad, “An extended misuse case notation: Including vulnerabilities and the

insider threat,” Twelfth Work. Conf. Requir. Eng. Found. Softw. Qual., pp. 67–77,

2006.

[219] M. Diallo and J. Romero-Mariona, “A comparative evaluation of three approaches

to specifying security requirements,” Proc. Int. Work. Conf. Requir. Eng. Found.

Software, Qual. (REFSQ’06), 2006.

[220] S. Heckman and L. Williams, “A systematic literature review of actionable alert

identification techniques for automated static code analysis,” Inf. Softw. Technol.,

vol. 53, no. 4, pp. 363–387, 2011.

[221] D. A. Ableidinger, “SECURITY IN SOFTWARE DEVELOPMENT, Why

Security is Lacking in Software,” The College of St. Scholastica, 2013.

[222] L. Levi, Qin Zhangb, and Yves Le Traonb, “Advances in Model-Driven Security,”

in Contribution to collective works, 2013, p. 59.

www.manaraa.com

150

Vitae

Name :Nabil Mohammed Abdo Mohammed

Nationality :Yemeni

Date of Birth :5/1/1983

 Email :g200905310@kfupm.edu.sa

Address Taiz - Yemen

Academic Background :

• Received Bachelor of Computer Education– King Khalid University (KKU) – Abha,

Saudi Arabia , 2008.

• Joint the Information and Computer science department as full time student at King

Fahd University of Petroleum & Minerals (KFUPM), Dhahran, Saudi Arabia in

September 2010.

• Completed Master of science (M.S.) in Computer science from King Fahd

University of Petroleum & Minerals (KFUPM), Dhahran, Saudi Arabia in

May 2015.

